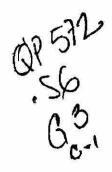
UNIVERSIDAD AUTONOMA DE NUEVO LEON FACULTAD DE MEDICINA

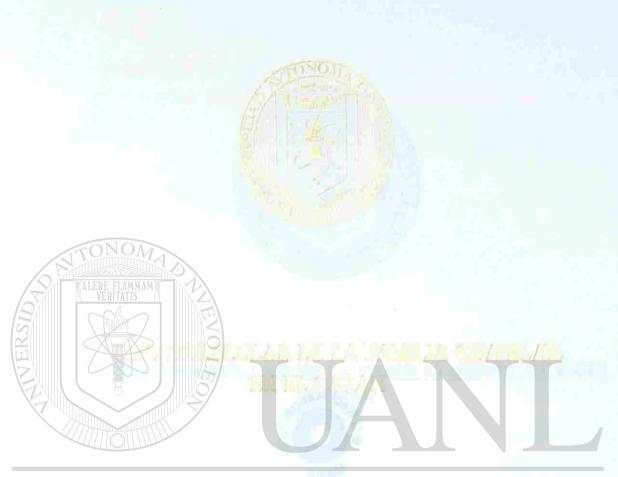
ESTUDIO MOLECULAR DE LA FAMILIA GH/PRL/SL EN EL CATAN

Por Q.C.B. MARIA DE LOURDES GARZA RODRIGUEZ

Como requisito parcial para obtener el Grado de MAESTRIA EN CIENCIAS con Especialidad en Biología Molecular e Ingeniería Genética


UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN ©
DIRECCIÓN GENERAL DE BIBLIOTECAS

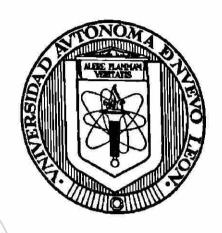
UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN ® DIRECCIÓN GENERAL DE BIBLIOTECAS


2 2 MAYO 2001 RECIBIDO

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN © DIRECCIÓN GENERAL DE BIBLIOTECAS

UNIVERSIDAD AUTOMOWA DE NUEVO LEON FACULTAD DE MEDICINA

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN BURILLEZ BURI


JAESTRIA EN CIENCLASI com Especialidad en Biología Molecular e Ingralesta Universidad en

UNIVERSIDAD AUTÓN FONDO DE NUEVO LEÓN

DIRECCIÓN GENERAL DE BIBLIOTECAS

UNIVERSIDAD AUTONOMA DE NUEVO LEON FACULTAD DE MEDICINA

ESTUDIO MOLECULAR DE LA FAMILIA GH/PRL/SL EN EL CATAN

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN Por

Q.C.B. MARIA DE LOURDES GARZA RODRIGUEZ

Como requisito parcial para obtener el Grado de MAESTRIA EN CIENCIAS Con especialidad en Biología Molecular e Ingeniería Genética.

Abril del 2001

El presente trabajo, titulado "Estudio Molecular de la Familia GH/PRL/SL en el catán", lo llevó a cabo la Q.C.B. María de Lourdes Garza Rodríguez en el Laboratorio de Biología Molecular de la Unidad de Laboratorios de Ingeniería y Expresión Genéticas del Departamento de Bioquímica de la Facultad de Medicina de la UANL, bajo la dirección de la Dra. Agnès Revol de Mendoza y la co-dirección del Dr. Hugo A. Barrera Saldaña.

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN

DIRECCIÓN GENERAL DE BIBLIOTECAS

AGRADECIMIENTOS

A Dios por la vida

A Marco por su comprensión y cariño

A mis padres y hermanos por su amor y apoyo incondicional

A mis asesores: la Dra. Agnès Revol, el Dr. Hugo Barrera y el Dr. Roberto Mendoza por sus enseñanzas y todo el apoyo que me brindaron a lo largo de mi trabajo

Al Departamento de Ecofisiología de la UANL

A las Maestras: Dolores, Eddy, Celia y Alma

A mis compañeros del laboratorio de Biología Molecular: Letty, Claudio, Rafa e Iram por su amistad y por hacer los días tan especiales

VERSIDAD AUTONO

A la Dra. Ana María Sifuentes por los consejos y el apoyo en mi trabajo práctico

A la generación de los 12

A Malena, Nancy, Sandra, Irma, el Chaparro, Martín y Luis Miguel por su amistad, sus consejos y sus palabras de aliento

A todo el Departamento de Bioquímica

INDICE

ágina
i
ii
ili
iv
1
2
áN
4
5
7
10
11
12
13
13
16

1.3.3 Filogenia	16
1.3.4 El catán, una especie en peligro de extinción	17
1.4 Justificación del Trabajo	18
CAPITULO II	
Objetivo General	19
Objetivos específicos	19
CAPITULO III. ESTRATEGIA GENERAL	20
ALERE FLAMMAM VERITATIS	
CAPITULO IV. MATERIAL Y METODOS	
4.1 Material	21
4.1 1 Origen de los reactivos	21
4.1.2 Material Biológico	22
JNIVE4,2 EquipoAD AUTÓNOMA DE NUEVO LE	Ó22
DI 4.3 Métodos N GENERAL DE BIBLIOTECAS	24
4.3.1 Obtención y cuantificación del DNA y el RNA	24
4.3.1.1 Extracción y cuantificación de DNAg de Tejido	24
4.3.1.2 Extracción y cuantificación de RNA total	25
4.3.1.3 Análisis electroforético del DNA y RNA	27
4.3.2 Identificación de los genes de GH y PRL en el catán.	27
4.3.2.1 Preparación de la membrana.	27

4.3.2.2 Marcaje de las sondas	28
4.3.2.3 Hibridación	29
4.3.3 Amplificación de las secuencias de GH, PRL y SL	29
4.3.3.1 Diseño de los iniciadores.	29
4.3.3.2 Reacción de RT.	30
4.3.3.3 PCR.	32
4.3.3.4 Análisis electroforético	33
4.3.3.5 Caracterización de los productos de PCR.	33
4.3.4 Clonación y análisis de los PA	34
ALERE FLAMMAM VERITATIS 4.3.4.1 Preparación del vector T	34
4.3.4.2 Ligación y transformación	34
4.3.4.3 Extracción del DNA plasmídico	35
4.3.4.4 Análisis de las clonas recombinantes	36
4.3.4.5 Determinación de las secuencias nucleotídicas	37
UNIVERS 4.3.4.6 Análisis de las secuencias nucleotídicas UEVO L	E(37)
DIRECCIÓN GENERAL DE BIBLIOTECAS	
CAPITULO V. RESULTADOS	
5.1 Extracción de DNAg	38
5.2 Extracción del RNA total a partir de cabezas	39
de larvas de catán y de juveniles de tilapia.	
5.3 Identificación de los genes de GH y PRL en el catán	40
5.4 Diseño de los iniciadores	41
5.4.1 Iniciadores de PRL.	41
5.4.2 Iniciadores de SL.	42

5.4.3 Iniciadores de la GH.	
5.5 Ensayos de RT-PCR con los iniciadores de SL y PRL	44
5.5.1 SL	44
5.5.1.1 Ensayos de RT-PCR	44
5.5.1.2 Clonación y secuenciación del PA.	45
5.5.2 PRL	46
5.5.2.1 Ensayos de RT-PCR con los iniciadores	46
de PRL en Catán.	
5.5.2.2 Clonación y secuenciación del PA	47
5.5,2.3 RT-PCR con los iniciadores de PRL en tilapia.	49
5.6. Obtención de la GH de catán	52
5.6.1 Ensayos de RT-PCR	52
5.6.2. Clonación del PA	53
5.6.3. Determinación y análisis de la secuencia	54
UNIVERSIDAD AUTÓNOMA DE NUEVO LE	ÓN
CAPITULO VI. DISCUSIÓN ER AL DE BIBLIOTECAS	59
CAPITULO VII. CONCLUSIONES	64
CAPITULO VIII. PERSPECTIVAS	65
CAPITULO IX. BIBLIOGRAFÍA	66

LISTA DE TABLAS

Tabla		Págin
11	Número de reportes de secuencias nucleotídicas de la	
	familia GH/PRL/SL	7
2.	Condiciones para la RT	31
3-	Condiciones estándar para la PCR.	32

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN
DIRECCIÓN GENERAL DE BIBLIOTECAS

LISTA DE FIGURAS

	rigura	Pagini
	Localización de las células productoras de GH, PRL y SL en la hipófisis.	4
	2. Estructura de los genes de la familia GH/PRL/SL	5
	3. Evolución de la familia GH/PRL/SL.	9
	ALERE FLAMMAM del Catán.	15
JKS.	5. Características del catán.	15
	6. DNAg de las diferentes especies.	38
A	7. RNA total de cabezas de larvas de catán y juveniles de tilapia.	39
	8. Hibridaciones en Slot-Blot de los genes de GH y PRL.	41
JN	IV 9. Piniciadores de PRLJTÓNOMA DE NUEVO LE	EÁ2N (
	D10. Iniciadorés de SLENERAL DE BIBLIOTECAS	43
	11. Iniciadores diseñados para GH en catán.	44
	12. RT-PCR con los iniciadores de SL.	45
	13. Clonas candidatas para SL de catán.	46
	14. Productos de amplificación obtenidos por RT-PCR	47
	con los primers de PRL(PRL1 y PRL2) en catán.	
	15. Clonas candidatas para PRL de catán.	48
	16. Secuencia de la Clona 11 y resultados del BLAST	48
	17. Estandarización de la PCR para PRL en Tilapia nilotica.	49

18. Purificación de los PA.	50
19. Secuencia de PRL de Tilapia nilotica.	51
20. Caracterización del PA de GH de catán.	52
21. Liberación de los fragmentos clonados.	53
22. Caracterización de las clonas con la enzima Pst I.	54
23. Análisis de la secuencia de GH de catán.	56
24. Árbol filogenético de GH en peces ancestrales.	58

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN DIRECCIÓN GENERAL DE BIBLIOTECAS

NOMENCLATURA

aa Aminoácido

cm² Centímetros cuadrados

°C Grados centígrados

DNA Ácido desoxirribonucleico

DNAc DNA complementario al RNAm

DNAg DNA genómico

dNTPs Desoxirribonucleósidos trifosfatos

DO Densidad Óptica

EDTA Acido etilen-diaminotetracético

GH Hormona del crecimiento

g Gramos

UNIVERSIDA horaSUTÓNOMA DE NUEVO LEÓN

kDa DIRECCIÓKilodaltons ERAL DE BIBLIOTECAS

μg Microgramos

μM Concentración micromolar

mM Concentración milimolar

M Concentración molar

mg Miligramos

min Minutos

ml Mililitros

ng Nanogramos

pb Pares de bases

PCR Reacción en Cadena de la Polimerasa

pH -log[H⁺]

PM Peso molecular

RNA RNA mensajero

RNAt RNA total

PRL Prolactina

RNA Ácido ribonucleico

RT Retrotranscripción

Segundos

S

SL Somatolactina

Taq DNA polimerasa de Thermus aquaticus

JUVIVERSID AUltravioleta TÓNOMA DE NUEVO LEÓN

X DIRECCI Veces la concentración DE BIBLIOTECAS

RESUMEN

Q.C.B. María de Lourdes Garza Rodríguez

Título del Estudio: ESTUDIO MOLECULAR DE LA FAMILIA GH/PRL/SL

EN EL CATAN

Número de páginas: 70

Candidato al grado de Maestría en Ciencias con especialidad en Biología Molecular e Ingeniería Genética.

Objetivo y método de estudio. Las hormonas del crecimiento (GHs), las prolactinas (PRLs) y las somatolactinas (SLs) constituyen una familia de hormonas polipeptidicas hipofisiarias, las cuales pudieron haberse originado de un gen ancestral común antes del surgimiento de los peces, permaneciendo este precursor aún desconocido. Esta familia de hormonas representa uno de los grupos más diversos en tamaño generado por duplicación génica. Los estudios de estas hormonas en mamíferos y peces han permitido realizar estudios de filogenia molecular y aclarar eventos evolutivos. Sin embargo, la falta de datos en peces primitivos no permite precisar la historia evolutiva de esta familia e inferir así la secuencia del potencial gen ancestral. En este estudio se trabajó con la especie Atractosteus spatula, el cual es un pez pancrónico localizado en la vertiente del Golfo de México, más específicamente en el estado de Tamaulipas. Una de sus características más importantes es su crecimiento importante ya que los adultos pueden llegar a medir hasta 3 metros de largo. En la actualidad se conoce muy poco acerca de la biología de esta especie, la cual se encuentra en peligro de extinción debido a la pérdida de su hábitat natural y de la pesca indiscriminada por el hombre. Este trabajo se enfocó en la identificación de los genes de GH y PRL en el DNAg del catán y en el diseño de iniciadores de GH, PRL y SL para realizar estudios de RT-PCR con RNA total de cabezas de larvas de catán.

Conclusiones y contribuciones. Se evidenciaron los genes de GH y PRL en el DNAg del catán por medio de la técnica de Slot-Blot. Aunque los iniciadores diseñados para PRL y SL permitieron obtener productos de RT-PCR, éstos no correspondieron a genes de la familia GH/PRL/SL. El DNAc de GH de catán fue clonado y secuenciado, el análisis de la secuencia reveló que la proteina madura de la GH se encuentra muy conservada entre los géneros Atractosteus y Lepisosteus a pesar de que divergieron hace aproximadamente 180 millones de años. Finalmente, se realizó la reconstrucción de un árbol filogenético que permitió analizar la secuencia del catán y compararla con la de los peces ancestrales.

Agnès Revol de Mendoza

Director

Dr. Hugo A. Barrera Saldaña

Co-Director

CAPITULO I

Introducción

La evolución se consideró una nueva rama de la Ciencia en el siglo XIX, bajo el impulso de Darwin, principalmente. Darwin propuso, en su teoría de la Selección Natural, que todos los organismos vivientes se desarrollaron a partir de otros más simples y que se estableció una selección basada en la competencia por sobrevivir (Darwin, 1859). Fue Darwin uno de los primeros en estudiar el origen de la vida y la evolución de las especies. El basaba sus estudios en la observación de las características físicas de las especies, y así fue como construyó el primer árbol evolutivo. Después, con la finalidad de aclarar y mejorar los datos evolutivos, se añadieron resultados provenientes de otras áreas de estudio como la Anatomía Comparada, la Paleontología, la Embriología Comparada, la Inmunología y la Bioquímica, mismos que permitieron afinar más los conocimientos sobre la evolución de las especies. Actualmente, se cuenta con una herramienta muy valiosa para el estudio de la evolución: la Biología Molecular, la cual permite obtener secuencias aminoacídicas y nucleotídicas de los genes y hacer comparaciones a nivel del material genético de cada organismo; gracias a estos estudios ha sido posible aclarar y corregir los datos de los cuales se disponía anteriormente y así surgió una nueva rama de la ciencia: La Evolución Molecular (Li y Graur, 1991).

El reto de la evolución molecular es identificar los eventos evolutivos, ordenarlos y descifrar su significado. Los datos moleculares nos permiten reconstruir la cronología de los cambios a nivel del material genético e identificar fuerzas involucradas en el proceso evolutivo.

La evolución molecular abarca tres áreas de estudio: la evolución de las macromoléculas, la filogenia molecular y la evolución prebiótica (Li y Graur, 1991). La Evolución de las Macromoléculas estudia los cambios ocurridos en el material genético y sus productos durante el tiempo de evolución y los posibles mecanismos responsables de estos cambios. La Filogenia Molecular reconstruye la historia evolutiva de organismos y macromoléculas a partir de datos moleculares, lo cual ha hecho que sea una de las áreas de la evolución molecular que ha generado mayor interés, principalmente porque el análisis de un conjunto de genes permite complementar y aclarar las relaciones filogenéticas en casos dificiles. Finalmente, la Evolución Prebiótica o el origen de la vida estudia los posibles eventos y mecanismos que pudieron originar la vida (Li y Graur, 1991).

El estudio de la filogenia molecular inició a principios del siglo XX. Los primeros estudios moleculares realizados en los años 60 s y 70 s utilizaban principalmente las secuencias de las proteínas, pero la acumulación de secuencias nucleotidicas no se realizó sino a finales de los años 70 s, teniendo un gran impacto en la filogenia molecular, lo que ha permitido en la actualidad que las secuencias nucleotídicas constituyan el material básico de los estudios filogenéticos. Mas sin embargo, los métodos tradicionales para el estudio de la evolución tales como la morfología, la anatomía, la fisiología y la paleontología, siguen siendo herramientas importantes para el estudio de la filogenia y complementan los estudios moleculares.

1.1 Las Familias Multigénicas

La duplicación del DNA está considerada como una fuerza mayor en la evolución. Las duplicaciones en tandem pueden surgir por errores en la replicación o por recombinación. Cuando un gen completo está involucrado en la duplicación, se generan dos genes con

actividades idénticas manteniendo ambos su función original, sin embargo, después ambos genes divergen entre sí acumulando mutaciones lo que origina que a la vez adquieran diferentes funciones. Se considera que los genes que provienen de la duplicación de un mismo gen ancestral integran una familia multigénica (Singer y Berg, 1991). Las familias multigénicas pueden estar formadas por tan solo dos genes o estar constituidas por cientos de ellos. Cada familia multigénica es distintiva y frecuentemente sus características varían de un grupo de especies a otro, algunos ejemplos de familias multigénicas son: los genes de la actina, los de la hormona del crecimiento y los de las globinas, entre otras (Ohta, 1991). Los miembros de la familia pueden permanecer juntos o dispersarse a diferentes cromosomas. Por lo general, los miembros de una familia de genes tienen funciones relacionadas o idénticas, aunque se pueden expresar en diferentes tiempos y en diferentes tipos de células. La organización del conjunto de genes en una familia es clave para dilucidar la serie de eventos que la originaron, por lo que el estudio de las familias multigénicas es importante para inferir sobre la historia de los genomas.

1.2 La familia GH/PRL/SLGENERAL DE BIBLIOTECAS

Las hormonas del crecimiento (GHs), las prolactinas (PRLs) y las somatolactinas (SLs) constituyen una familia de hormonas polipeptídicas hipofisiarias. Se cree que estas hormonas pudieron haberse originado de un gen ancestral común (aún desconocido), antes del surgimiento de los peces (May D y cols., 1999). Y hasta el momento representan uno de los grupos más diversos generados por duplicación génica.

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN

1.2.1 Expresión de los miembros de la familia GH/PRL/SL

Estas hormonas se expresan principalmente en la hipófisis, sin embargo, cada hormona se expresa en diferentes tipos celulares. Así, la GH se expresa específicamente en los somatotrofos, una subclase de células acidofilicas que son las más abundantes de la hipófisis y que se localizan en la pars distalis ventral de la glándula. La PRL es secretada por los lactotrofos, que son células acidofilicas de la pars ditalis proximal, mientras que la SL se produce en unas células que se encuentran en la pars intermedia de la hipófisis (Figura 1), las cuales son positivas para la tinción de PAS en la mayoría de los peces, excepto en los salmónidos (Kaneco y cols.,1996). A este respecto existen diversos trabajos realizados en peces en los cuales se reporta la expresión de GH, PRL y SL en tejidos extrapituitarios; por ejemplo la GH se ha detectado en cerebro, corazón, branquias e higado, entre otros. Además, estos estudios revelaron que las tres hormonas presentan expresión en larvas en la etapa de organogénesis (Yang y cols.,1999).

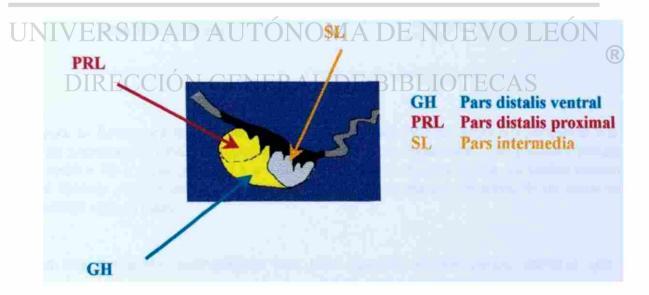
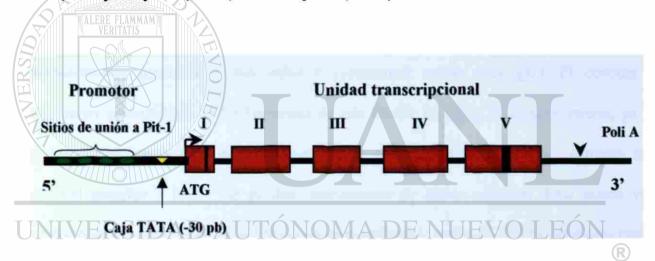



Figura-1.-Localización de las células productoras de GH, PRL y SL en la hipófisis. La GH es producida en la pars distalis, la PRL en la pars ditalis proximal y la SL en la pars intermedia de la hipófisis de los peces.

1.2.2 Estructura génica de las GHs, PRLs y SLs

Los genes de las hormonas que pertenecen a esta familia poseen una estructura que se ha conservado a lo largo de la evolución. Tienen como particularidad el estar formados por un promotor que posee sitios de unión a Pit 1, el cual es un factor transcripcional específico de tejido (Ingraham y cols., 1998). Pit 1 es el responsable de la expresión de estos genes en la hipófisis. La unidad transcripcional de los genes de GH, PRL y SL posee 5 exones y 4 intrones (Figura 2), a excepción de algunos peces como la tilapia y el salmón, en los que un quinto intrón se introdujo en el exón 5 y dio lugar a la formación de un sexto exón (Agellon y cols., 1988, Takayama y cols., 1991, Swennen y cols., 1992).

DIRECCIÓN GENERAL DE BIBLIOTECAS

Figura 2.- Estructura de los genes de la familia GH/PRL/SL. Los genes que pertenecen a la familia de las hormonas del crecimiento poseen una estructura muy conservada, cuyo promotor presenta sitios de unión a Pit-1 y una caja TATA a -30 pb del inicio de la transcripción. La unidad transcripcional está formada por 5 exones y 4 intrones, en el exón V se señala la inserción de un intrón extra que presentan algunos peces.

Las tres hormonas polipeptídicas han sido descritas en los peces, mientras que en los mamíferos únicamente se han detectado la GH y la PRL, pero no se descarta la posibilidad de que exista la SL.

En la actualidad se han clonado los genes de esta familia en una gran cantidad de peces (Tabla 1), siendo los mas estudiados los de las GHs de aquellos peces que son de interés para la acuacultura, ya que las GHs recombinantes han sido utilizadas con éxito en las granjas de peces (Zhu v Sun, 2000, de la Fuente v cols., 1999, Jeh v cols., 1998). Es importante hacer notar que la mayoría de los peces en los que se han estudiado estas hormonas, pertenecen a la familia de los teleósteos (peces óseos modernos), contrastando con la minoría (7%), los cuales pertenecen a familias como la de los Lepisosteidae, Amiiformes, Acipenseridae y Torpedinoidei. Estas últimas presentan un gran valor para estudios filogenéticos, va que son peces ancestrales. En la actualidad se cuenta tan solo con la identificación de hormonas de esta familia en tres peces pertenecientes a estas familias, los cuales son, el Acipenser transmontanus (esturión), Amia calva y Lepisosteus osseus (pez gar). El conocer las secuencias nucleotídicas de las hormonas de esta familia en peces es de gran interés, va que representa un instrumento invaluable para hacer comparaciones, analizar los cambios en el material genético e inferir los posibles mecanismos de dichos cambios. Esto puede verse reflejado en los estudios de estas hormonas en mamíferos y peces, lo cual ha permitido realizar estudios de filogenia molecular y aclarar ciertos mecanismos evolutivos (Bernardi y cols., 1993; Argenton y cols., 1993; Wallis, 1996, 2000).

Tabla 1.- Número de reportes de secuencias nucleotídicas de la familia GH/PRL/SL.

Hormona	Especies de peces en las que se han reportado secuencias nucleotídicas de GHs, PRLs, y SLs.	
	Teleósteos	No teleósteos
GH	73	4
PRL	15	1
SL	13	2

En varias especies de peces se han encontrado dos genes que codifican para GHs y/o dos genes que codifican para PRLs. En algunas especies estos genes son altamente similares en su estructura y codifican para una misma proteína (Yasuda y cols., 1992), mientras que en otros peces se generan dos proteínas que pudieran tener diferente función (Auperin y cols., 1994).

1.2.3 Evolución de la familia

Estas proteínas por la semejanza que presentan en su secuencia y estructura, fueron agrupadas en una misma familia. Se supone que los genes aparecieron por duplicación de una secuencia ancestral con mayor similitud a la prolactina (Niall, 1971) (Figura 3). Por otra parte, Takayama y cols (1991) sugirieron que también participó un intercambio de exones independientes y de una secuencia reguladora en la divergencia de los tres genes. Las hormonas más estudiadas de esta familia desde el punto de vista evolutivo son las GHs y las PRLs, en contraste las SLs ha sido poco estudiadas por ser las más recientemente caracterizadas y por que solo han sido encontradas en algunas especies de peces.

Se estima que la divergencia de la PRL y la GH del gen ancestral ocurrió hace más de 400 millones de años, lo que concuerda con la presencia tanto de PRLs como de GHs en los peces primitivos (Niall y cols., 1971). La evolución de las PRLs y de las GHs es muy semejante, con una estructura fuertemente conservada y con períodos de cambios rápidos que parecen

asociarse más a cambios sutiles que a cambios marcados en la función, ya que ésta quedó globalmente conservada, sobre todo en el caso de la GH.

Aunque la evolución de estas dos hormonas es muy semejante, los estudios moleculares indican que las PRLs presentan en promedio una velocidad de cambio más lenta que la de las GHs (Wallis, 2000).

Los genes de las GHs parecen variar más en peces que en mamíferos (Treviño, 1999), incluyendo su estructura, ya que en la trucha, salmón y tilapia, están formados por 6 exones y 4 intrones.

La familia se expandió nuevamente en los mamíferos y se originaron los lactógenos placentarios. Los lactógenos placentarios (PLs) son hormonas que pertenecen también a esta familia y son secretados preferencialmente en la placenta. La clonación de diferentes genes de PLs indica que en el orden de los primates surgieron a partir del gen de la GH, mientras que los PLs de otros órdenes surgieron del gen de la PRL (Figura 3).

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN ®
DIRECCIÓN GENERAL DE BIBLIOTECAS

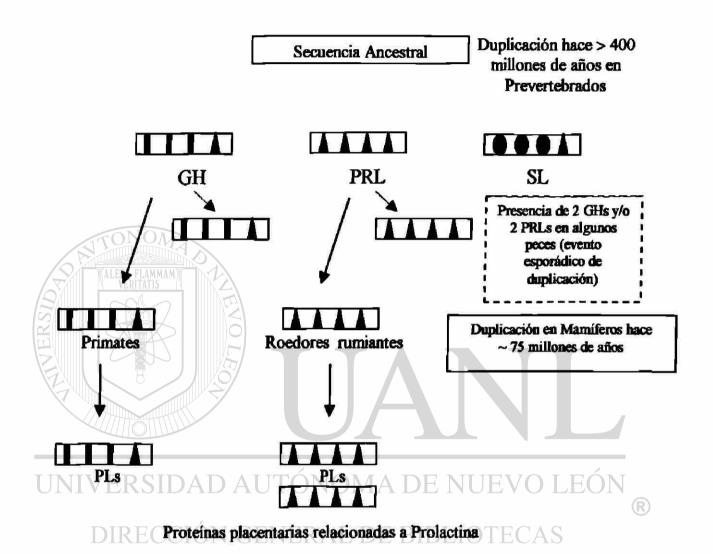


Figura 3.- Evolución de la familia GH/PRL/SL. En el esquema se representan los eventos de duplicación que ocurrieron a lo largo de la evolución para generar esta familia de genes.

1.2.4 GHs

Las hormonas del crecimiento son polipéptidos de cadena sencilla de aproximadamente 22 kDa. La hormona madura típica consta de aproximadamente 190 aminoácidos.

Las GHs son esenciales para el crecimiento embrionario postnatal, así como para el metabolismo normal de carbohidratos, lípidos, nitrógeno y minerales de los vertebrados. Sus efectos relacionados con el crecimiento, son mediados primariamente por la somatomedina, llamada factor de crecimiento I semejante a la insulina (IGF-I) (Mullis y cols., 1991).

Se han realizado esfuerzos por entender la filogenia molecular de las GHs, enfocándose más a la caracterización de éstas en mamíferos y teleósteos, ya sea por el análisis de la secuencia primaria de aminoácidos o de nucleótidos (obtenidas gracias a la tecnología del DNA recombinante). Para identificar tendencias o cambios de la secuencia primaria de las GHs, es indispensable obtener sus secuencias en un amplio número de especies. En la actualidad, a pesar de haber sido clonadas las secuencias de genes de GHs en algunos peces, se carece de un gen ancestral que permita servir como referencia para reconstruir las relaciones entre mamíferos y teleósteos, de aquí que la reconstrucción de los árboles filogenéticos se haya llevado a cabo de manera insatisfactoria.

La conservación de la GH en peces del mismo orden varía de un 82 a un 100% de similitud, mientras que entre órdenes varía de un 49 a un 68% y en peces y tetrápodos puede llegar a variar de un 37 a un 58% (Chang y cols., 1992).

Estudios recientes enfocados en un fragmento del intrón 4a de la GH indican que en los peces mas ancestrales (*Amia calva*, *Lepisosteus osseus*, *Acipenser sp*), este fragmento del intrón no está presente, a diferencia de los peces más evolucionados, lo cual parece representar un parteaguas en la evolución de la GH en estos vertebrados (Venkatesh y cols, 1999).

1.2.5 PRLs

Las Prolactinas constituyen el segundo miembro de la familia. Son hormonas proteínicas que poseen una masa molecular de aproximadamente 23 kDa y una estructura muy semejante a la de las GHs. Las PRLs se encuentran en todos los vertebrados, desde los peces más primitivos hasta los mamíferos más evolucionados. Diferentes trabajos experimentales indican que las PRLs son unas de las hormonas más variables en su función, según la especie de que se trate (Narnaware y cols., 1998, Kelly y cols., 1999), están involucradas en fenómenos como la lactación, reproducción, osmoregulación e inmunomodulación. En varias especies de vertebrados las PRLs tienen acción sobre diferentes órganos blanco. Así, por ejemplo en hembras de mamíferos estimulan el crecimiento de las glándulas mamarias y la lactación (Sandrina y cols., 1999), igualmente, estimulan la producción de progesterona; mientras que en los peces pueden provocar un ligero cambio de color actuando sobre las células pigmentadas; y dentro de sus principales funciones destaca la de osmorregulación (Baccari y cols., 1996, Kelly y cols., 1999).

Actualmente, las secuencias para las PRLs en diferentes especies de mamíferos han permitido la formulación de árboles filogenéticos mas confiables, lo cual no ocurre con los peces, para los cuales aún son pocas las secuencias que se han reportado (Wallis., 2000). Por tal motivo, el aumentar el número de secuencias para la PRL en peces contribuiría a aclarar la relación que tienen estas hormonas con las GHs y las SLs y permitiendo a su vez un acercamiento más estrecho a la secuencia ancestral.

1.2.6 SLs

Las SLs son hormonas pituitarias recientemente caracterizadas que pertenecen a la familia de la GH, el nombre de la Somatolactina proviene de la unión de los nombres de somatostatina y prolactina. Su DNAc fue reportado por primera vez en 1990 en una librería de DNAc de hipófisis del pez platija (Ono v cols., 1990). Por su similitud estructural con las GHs v las PRLs, se le agrupó dentro de esta familia de genes. El tamaño de esta hormona puede variar de 24.5 a 28 kDa. A diferencia de las GHs que se encuentran en forma no glicosilada, las SLs, al igual que las PRLs, se pueden encontrar en forma glicosilada y no glicosilada, dependiendo de la especie. Una particularidad de la mayoría de los teleósteos es que poseen SLs glicosiladas. Las características moleculares y bioquímicas de estas hormonas se han estado esclareciendo. pero su función fisiológica aún no es bien conocida. Se han sugerido diversas funciones fisiológicas para las SLs incluyendo su participación en maduración sexual, regulación de calcio, respuesta al estrés, regulación acido-base, metabolismo de las grasas y adaptación a los cambios de salinidad (Kaneko T, 1996). Aunque se carece de evidencia directa de las funciones de esta hormona, la regulación ácido-base parece ser la más probable (Kaneko T, 1996). Estas evidencia ponen de manifiesto la necesidad de más estudios para conocer las funciones que estas hormonas desempeñan, aunque lo más probable es que se trate de hormonas multifuncionales, las cuales están involucradas en diferentes eventos biológicos bajo condiciones fisiológicas diferentes.

Las SLs han sido reportadas en diferentes grupos de peces y en un anfibio, pero no en otra clase de vertebrados (Kaneko y cols., 1996), aunque no se descarta la posibilidad de que esté presente en otras especies.

Hasta 1999, esta hormona había sido identificada solo en peces teleósteos y se postuló que las

SLs solo estaban presentes en este tipo de peces, pero su aislamiento en el esturión blanco y en un pez pulmonado, demostró que las SLs se encuentran presentes en diferentes lineages de vertebrados tales como los Actinopterigios y los Sarcopterigios. Algunos de los peces en los que se han descrito las SLs son: el pez dorado (Astola y cols., 1996), anguila (May y cols., 1997), trucha (Yang y cols., 1997), salmón (Rand-Weaver y cols., 1991), lenguado (Pendon y cols., 1994), esturión (Amemya y cols., 1999) y en algunos peces pulmonados (May y cols., 1999). De aquí se desprende que la SL se encuentra conservada desde los peces más ancestrales, como el esturión, hasta los más evolucionados.

La conservación de las SLs en las diferentes especies de peces va desde un 52 a un 91 % y si se comparan las secuencias de las SLs de peces con la secuencia de SL del anfibio *Bufo* marinus, la similitud varía del 41 al 63 %.

1.3 El Catán (Atractosteus spatula)

1.3.1 Características físicas

El catán (Atractosteus spatula) es uno de los peces más distintivos de agua dulce, es el más grande de los peces lepisosteidos, pudiendo llegar a pesar hasta 136 Kg. Este pez presenta una cabeza muy parecida a la de un cocodrilo, de donde deriva su nombre en inglés "Alligator gar". Se caracteriza por un crecimiento sumamente importante, lo que les permite alcanzar una talla de 80 cm/año, y los adultos pueden llegar a medir hasta 3 metros de largo, aunque el tamaño promedio de los adultos en condiciones de cautiverio es de alrededor de dos metros (Figura 4). El cuerpo es largo, delgado, de color oliva o café verdoso (raramente negro) en la parte superior, mientras que su abdomen es de color amarillo o blanco. Ocasionalmente, se observan manchas con pigmento café en el pedúnculo caudal y las aletas, particularmente en

Estudio Molecular de la Familia GH/PRL/SL en el Catán

especímenes pequeños. Los huesos superiores del cráneo tienen pequeños tubérculos redondos cubiertos de esmalte. Posee aletas sin espinas, fosas nasales en la punta de la nariz que le permite respirar aire atmosférico y dos hileras de dientes de cada lado. Además, los adultos poseen colmillos dermopalatinos lo cual los dota de un equipo masticatorio ideal para una alimentación omnívora (http://www.fcn.state.fl.us/gfc/fishing/Fishes/gar.html). Esta especie se alimenta mayormente de peces y cangrejos, pero algunas veces de pájaros o incluso deshechos que se encuentren en la superficie del agua. El cuerpo del catán está completamente revestido de escamas romboideas únicas en la especie (Figura 5). Una de las características importantes en este pez es que posee una vejiga natatoria muy vascularizada que le permite respirar aire atmosférico por medio de la faringe, pudiendo sobrevivir durante horas fuera del agua. El catán puede diferenciarse el resto de las especies de lepisosteidos por sus dos filas de dientes mandibula hocico ancho en superior, corto tamaño (http://www.arch.dcr.state.nc.us/subsist/zooarch.htm).

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN BIRECCIÓN GENERAL DE BIBLIOTECAS

Figura 4.- Tamaño del Catán. En esta foto podemos observar el tamaño tan importante que alcanzan unos individuos. Este espécimen mide 3 metros de longitud.

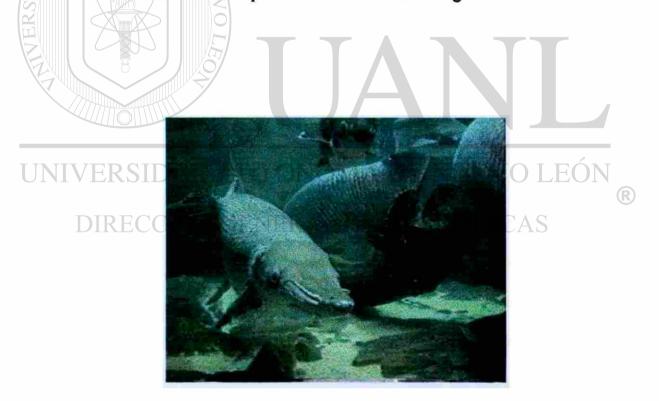


Figura 5.- Características del catán. En esta imagen del catán se observan sus principales características físicas, su cuerpo largo y delgado, su cabeza semejante a la de un cocodrilo y su hocico ancho, entre otras.

1.3.2 Distribución

El catán es un pez que habita en ríos de agua dulce o lagos, aunque se llega a encontrar en aguas salobres, e incluso es capaz de sobrevivir largos períodos en agua marina; de hecho existen reportes de acuarios en los que se menciona que algunos catanes que han sobrevivido en estanques de agua salada por tiempo indefinido.

Generalmente vive en lugares de aguas abiertas y prefiere los hábitats grandes con aguas profundas y con frecuencia se le encuentra en la superficie del agua. La localización del catán se restringe a la vertiente del Golfo de México y específicamente, en el estado de Tamaulipas, aunque esporádicamente puede ser encontrado en algunos ríos de Tabasco y San Luis Potosi (Mendoza y cols, 1999). En México, se encuentra en el estado de Veracruz una especie cercana al catán, el pegelagarto (*Atractosteus tropicus*), el cual se distingue del catán por poseer un hocico mas ancho con una sola hilera de dientes a cada lado, es mas pequeño en tamaño y comúnmente tiene el dorso moteado (Mendoza y cols, 1999).

1.3.3 Filogenia IDAD AUTÓNOMA DE NUEVO LEÓN

Es común que a esta especie se le asigne el género Lepisosteus. No obstante, Skuttus en 1963 lo reconoció como un Atractosteus, el cual actualmente es un subgénero de Lepisosteus. Por otra parte, Wiley, basado en la presencia de un Lepisosteido, Atractosteus strausi, consideró que la separación de los dos géneros (Atractosteus y Lepisosteus) había ocurrido en el inicio o a mitad del Cretácico, antes de la separación del rompimiento del continente Pangea. Debido a lo antiguo de la divergencia, él concluyó que Atractosteus debería desaparecer de la sinonimia de Lepisosteus, en la cual se le había colocado originalmente. Se emitió la hipótesis de que ambos géneros datan de hace 180 millones de años (Wiley, op.cit).

En la actualidad se reconocen siete especies de Lepisosteidos como los únicos representantes vivientes de estos dos géneros, las cuales se encuentran restringidas a ciertas zonas del Norte de México, Centro América y el Caribe.

Cuatro especies se encuentran en el género Lepisosteus:

- L. osseus
- L. platyrhinchus
- L. platostomus
- L. oculatus

Y tres en el género Atractosteus:

- A. spatula
- A. tropicus
- A. tristoechus

Ambos géneros pertenecen a la familia Lepisosteidae.

1.3.4 El catán, una especie en peligro de extinción

El catán es muy apreciado por su carne y los estados de Nuevo León y Tamaulipas cuentan con un comercio bien establecido, además el catán es considerado un trofeo de pesca debido a su gran tamaño y a lo dificil que resulta ser su captura (Mendoza y cols, 1999).

En la actualidad no existen normas que regulen su captura, lo cual ha ocasionado una disminución alarmante en el número de ejemplares. En algunos ríos de Estados Unidos este pez ha desaparecido y en otros se le encuentra muy escasamente, esto parece deberse a la canalización de grandes ríos y la eliminación de las aguas tranquilas preferidas por el catán. Una de las ventajas que presenta el catán sobre otras especies es su capacidad de sobrevivir a

cambios de salinidad, lo que le permite emigrar hacia otros lugares buscando aguas tranquilas. Es importante señalar la gran importancia de esta especie, debido a su valor faunístico, por ser endémica, por encontrarse en peligro de extinción y principalmente por su valor científico, por tratarse de organismos pancrónicos, de aquí se deriva la importancia de buscar medidas eficaces para su conservación y aprovechamiento.

1.4 Justificación del Trabajo

Hasta la fecha, las tres secuencias de las hormonas de la familia GH/PRL/SL no han sido reportadas para una misma especie primitiva; además son escasos los conocimientos sobre los mecanismos que se llevaron a cabo para formar la familia génica y sobre la supuesta secuencia ancestral.

De esta manera, el estudio molecular de la familia GH/PRL/SL en una especie pancrónica como Atractosteus Spatula (catán) permitiria contribuir a aclarar las relaciones filogenéticas entre estas proteínas, así como inferir sobre los mecanismos moleculares que se llevaron a cabo para formar esta familia de genes. Adicionalmente la obtención de la secuencia de la hormona del crecimiento en un pez ancestral, aportaría datos relevantes para realizar comparaciones nucleotídicas y aproximarse más al gen ancestral.

Finalmente, el reporte de las secuencias de hormonas que presentan un papel fisiológico clave en una especie en peligro de extinción como el catán permitiría complementar los estudios biológicos y fisiológicos que se han venido efectuando sobre este pez y contribuyendo al rescate de la especie.

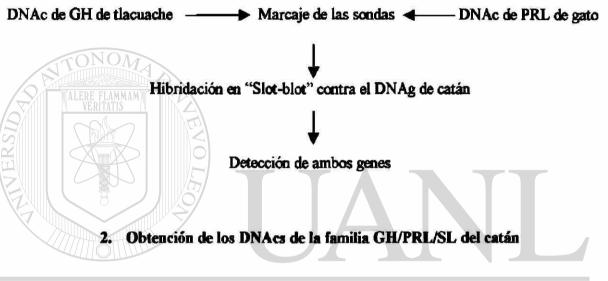
CAPITULO II

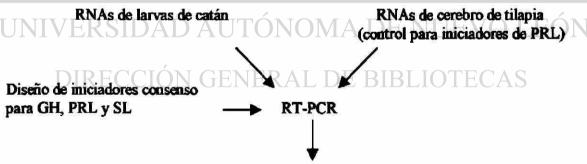
OBJETIVOS

2.1 OBJETIVO GENERAL

Estudiar los genes de la familia GH/PRL/SL en el catán.

2.20BJETIVOS ESPECÍFICOS


- 2.2.1.- Investigar la presencia en el genoma del catán de los genes de GH y PRL.
- 2.2.2.- Partiendo de las secuencias conocidas de los DNAcs de GH, PRL y SL en peces, diseñar iniciadores consenso para el gen de la GH del catán.
- 2.2.3.- Obtener la secuencia del DNAc de la GH del catán.
 - 2.2.3-1 Amplificar por RT-PCR el DNAc.
 - 2.2.3-2 Clonar y secuenciar el producto amplificado.
- 2.2.4.- Analizar y comparar las secuencias obtenidas con las presentes en el GenBank.


CAPITULO III

Estrategia General

La estrategia general comprendió las siguientes etapas:

1. Identificación de los genes de GH y PRL en el DNAg del catán.

Clonación y/o secuenciación de los PA

3. Análisis de las secuencias y reconstrucción de los árboles filogenéticos.

Comparaciones de las secuencias nucleotídicas y formulación de árboles filogenéticos a través del programa Phylip

CAPITULO IV MATERIAL Y MÉTODOS

4.1 Material

4.1 1 Origen de los reactivos

Los reactivos utilizados para realizar la Reacción en Cadena de la Polimerasa (PCR) fueron obtenidos de las siguientes casas comerciales: la enzima DNA polimerasa Taq y el MgCl₂ de Promega Corporation (Madison,Wi, EUA) y los dNTPs de GIBCO-BRL (Gaithersburg, MD, EUA,). Los reactivos para la RT-PCR y las enzimas de restricción y de modificación que se utilizaron fueron de GIBCO.BRL y de New England Biolabs (Beverly, MA, EUA). Las enzimas RNAsa y Proteinasa K provinieron de SIGMA (St.Louis, MO, EUA).

La extracción de RNA total a partir de tejido se realizó con el estuche comercial "Totally RNA Extraction Kit" de la compañía Ambion, Inc. (Austin, Tx, EUA). El RNAsin (Inhibidor de la RNAsa) utilizado para la conservación del RNA fue adquirido de la casa comercial Promega.

Para la eliminación del DNA contaminante de las muestras de RNA se utilizó el estuche comercial de QIAGEN: RNA/DNA kit con las columnas QIAGEN-tip 20 (Valencia, CA, EUA).

Par la realización de las hibridaciones se utilizaron membranas de nylon de Amersham International (Buckinghamshire,UK). El marcaje de las sondas se realizó con el estuche comercial "Rad labelling system" de GIBCO-BRL.

La secuenciación se llevó a cabo con el estuche comercial "Amplicycle Sequencing Kit" de Perkin Elmer. Los nucleótidos radiactivos utilizados se obtuvieron de Amersham International, mientras que los oligonucleótidos utilizados fueron sintetizados por la compañía GIBCO-BRL.

4.1.2 Material Biológico

Para la realización de las clonaciones se utilizaron plásmidos pBlue-Script (pBS-SK+) y las cepas de *E. coli* XL1-Blue y Top 10 de la colección de plásmidos y cepas de la ULIEG, respectivamente.

Las muestras de los diferentes tejidos de catán, pegelagarto, tilapia y tiburón, así como las larvas de catán fueron proporcionadas por el Grupo de Ecofisiología de la Facultad de Biología de la UANL. Todas las muestras se almacenaron a -70°C o en nitrógeno líquido.

DAD AUTÓNOMA DE NUEV

4.2 Equipo

Para la realización de este trabajo se utilizó el siguiente equipo: un horno de microondas LG modelo MS-70IC, microcentrífugas Eppendorf modelos 5402 y 5415, fuentes de poder ISCO 494 (ISCO, Nebraska, EUA), EC 600 (E-C Aparatus Corporation, St. Petersburg, Florida) y BRL 250 (Gibco-BRL), una centrífuga Beckman allegraTM 21R, modelo 367570, un agitador de tubos Barnstead Termolyne modelo Maxi Mix (Bubuque, IOWA, EUA), una placa agitadora con control de temperatura marca Corning modelo PC320 (N.Y., EUA), un secuenciador automático GX100 (Genomyx, California, EUA), un secuenciador automático dNA sequencer Long Reader 4200 (LI-COR,

California, EUA), un congelador So-Low Enviromental (Cincinnati, Ohio, EUA), un secador de geles (Labconco, Ca, EUA), un termomixer 5436 (Eppendorf), un baño de agua 188 (Precision, Chicago, EUA), una placa de agitación modelo 3520, una incubadora Shell Lab modelo 1525, un baño de agua giratorio (New Brunswick Scientific Co, inc. Edison, N.J. USA), una campana de luz ultravioleta modelo p-036-02 (CBS Scientific Co), una balanza analítica marca OHAUS modelo AP110S, una balanza granataria OHAUS modelo TS4KD (Camibb, Göttingen, Alemania), un horno con vacío (Precision Scientific Group, Chicago, EUA), una incubadora de hibridación modelo 310 (Robbins Scientific Co. Sunnyvale, Ca, EUA).

El seguimiento del crecimiento bacteriano se realizó con un espectofotómetro de la marca Beckman modelo DU-70 (Scientific Instruments División Fullerton, CA, EUA).

Los reactivos se almacenaron en un congelador marca TorRey (Mty, Mex). Los termocicladores utilizados fueron de los modelos de MJ Research PT 150 y PT100 (Watertown, Mass, EUA), el Perkin-Elmer 2400, Hybaid PCR Express y el RoboCycler 96 (Stratagene, La Jolla, Ca. EUA).

El procesamiento de los datos se realizó en computadoras IBM modelos G42.

Los procesadores de texto utilizados fueron: *Microsoft Word* Versión 200(© 1983-1999 Microsoft Corparation), procesadores de gráficos *Microsoft Power Point* Versión 2000 (© 1983-1999 Microsoft Corparation), *Adobe Photoshop Limited Edition* 2.5.1 (© 1989-1993 Adobe Systems Incorporated) y *UMAX Scan* (© 1990-1991 UMAX Scanner Driver, Impact Research Inc).

Los programas de análisis en Biología Molecular utilizados fueron: Amplify Versión 1.2b (Bill Engels © 1992 University of Wisconsin Genetics M. Madison, WI, EUA),

DNA Strider TM 1.1 (© Ch. Merck and C.E.A 1989, Service de Biochimie-Département de Biologie- Institut de Recherche Fondamentale-CEA-FRANCE), Clustal W Version 1.5 (Multiple Sequence Alignments) y Phylip (Phylogeny Inference Package, version 3.5c, Department of Genetics, University of Washintong, Seattle, EUA).

Para la cuantificación del DNA y la determinación de los tamaños se utilizó el aparato Gel Doc 1000 de Bio-Rad (Hercules, CA, EUA).

4.3 Métodos:

4.3.1 Obtención y cuantificación del DNA y el RNA

4.3.1.1 Extracción y cuantificación de DNAg de Tejido

Las muestras de músculo de catán, tiburón y pegelagarto y el de placenta humana se procesaron utilizando la técnica descrita por Gross-Bellard y cols (Gross-Bellard y cols., 1974). Los tejidos fueron macerados en un mortero en presencia de nitrógeno líquido, se agregaron 1.2 ml de buffer firío (Tris-HCl a 10 mM y pH=8, NaCl a 100 mM, EDTA a 25 mM pH=8, SDS 0.5% y Proteinasa K a 0.1mg/ml) por cada 100 mg de tejido, se transfirió todo en un tubo Falcon y se colocó en baño de agua a 50°C durante 12 a 18 horas. Después de la incubación, se procedió a realizar una extracción con fenol Sevag (½ volúmen de fenol: ½ volúmen de Sevag, el cual consiste de cloroformo y alcohol isoamílico 24:1), se agitó vigorosamente en el vórtex y se centrífugo a 17000g durante 10 min (9000 rpm durante 15 min). Si las fases no se separaban bien, se agregaba otro volumen de buffer sin proteinasa K y se repetía la centrifugación. Se recuperó la fase acuosa, el DNA se precipitó con ½ volumen de acetato de amonio 7.5M y 2 volúmenes de etanol al 100%, luego se centrifugó a 9000 rpm por 15 min y la pastilla se lavó con

etanol al 70%. La pastilla se dejó secar al aire y se resuspendió en agua mili Q. El RNA residual se eliminó agregando SDS a una concentración final del 0.1% y 1μg/ml de RNAsa, e incubando 1 hora a 37°C. Se realizó nuevamente una extracción fenol:sevag como la antes descrita, se precipitó el DNA con ½ volumen de acetato de amonio 7.5 M y 2 volúmenes de etanol al 100%, se lavó la pastilla, se secó y se resupendió en agua mili Q.

El DNAg obtenido se cuantificó por espectrofotometría, mezclándose de cada muestra de DNA 1 µl con 999 µl de agua mili Q, se utilizó agua mili Q como blanco y se midió la absorbancia a 260 nm. La fórmula que se utilizó para calcular la concentración de los DNAs fue la siguiente:

Concentración de DNAg (ng/µl)= (factor de dilución)(50)(DO 260nm)

4.3.1.2 Extracción y cuantificación de RNA total

Las extracciones de los RNAs de hipófisis de pegelagarto y catán, de las cabezas de las larvas de catán y de las cabezas de juveniles de tilapia se realizaron con el estuche comercial de Ambión. En el caso de cabezas de tilapia, se trabajó con tejido fresco, a diferencia de todos los demás tejidos que estuvieron conservados en nitrógeno líquido o a -70°C antes de realizar la extracción. El tejido se homogenizó en 10 volúmenes de la solución de desnaturalización, se transfirió a un tubo nuevo y se midió el volumen inicial (Vi), se adicionó 1/10 del Vi de la solución de acetato de sodio 3M y se mezcló por inversión. Enseguida se agregó un Vi de fenol/CHCl₃ (Solución 1), se agitó vigorosamente durante 1 min en el vórtex, se almacenó en hielo durante 5 min y se

centrifugó 5 min a 12000 rpm. Se transfirió el sobrenadante a un tubo nuevo, se agregó un Vi de fenol/CHCl₃ (Solución 2), se agitó vigorosamente por 1 min en el vórtex y se colocó en hielo durante 5 min. Después de una centrifugación de 5 min a 12000 rpm, se transfirió la fase acuosa a un tubo libre de RNAsa, se agregó un volumen de isopropanol, mezclando bien. Se dejó precipitando a -70°C durante 30 min y se centrifugó por 15 min a 12000 rpm. Una vez eliminado el sobrenadante, la pastilla se lavó con etanol al 70%, se repitió la última centrifugación y la pastilla se dejó secar al aire libre durante aproximadamente 10 min, antes de resuspenderse en agua libre de RNAsa.

El DNA contaminante se eliminó por medio de columnas del estuche comercial de QIAGEN RNA/DNA, siguiendo el protocolo del proveedor.

Los RNAs se conservaron en agua con DEPC estéril, RNAsin (1U/µl) y DTT (5mM) a -70°C.

Mediante el programa computacional *Molecular Analyst* del Gel Doc se pudo cuantificar el RNA por la intensidad de fluorescencia de las bandas teñidas con bromuro de etidio. Este compuesto se intercala entre las bases del RNA y emite una fluorescencia al ser excitado por la luz ultravioleta. La fluorescencia emitida es proporcional a la cantidad de bromuro de etidio que se intercala, dependiendo así de la cantidad de RNA. Se realizó una curva de calibración de diferentes concentraciones de RNA y de esta manera se determinó la concentración del RNA de larvas de catán y de tilapia.

4.3.1.3 Análisis electroforético del DNA y RNA

Las muestras de DNA se corrieron en un gel de agarosa al 0.8%. La electroforesis se realizó a 100 V y las bandas se visualizaron tiñendo el gel en una solución de bromuro de etidio a 2 μg/ml. El gel se colocó en el Gel Doc para ser analizado y observar la calidad del DNA.

Para observar la calidad del RNA extraído, las muestras se corrieron en un gel desnaturalizante preparado con 50 ml de agarosa al 1%, 250 µl de Isotiocianato de guanidina 1 M y 5 µl de Bromuro de etidio 100x.

4.3.2 Identificación de los genes de GH y PRL en el catán.

Para la identificación de los genes de la GH y de PRL en catán, tiburón y pegelagarto, se realizaron hibridaciones del DNAg con sondas disponibles en el laboratorio. Para el gen de la GH se utilizó una clona del DNAc de la GH del tlacuache que incluye los exones IV y V (Sifuentes Rincón, 2000), mientras que para la identificación de la PRL se utilizó una clona con el DNAc de la PRL del gato que incluye los exones II al V (Sifuentes Rincón, 2000).

4.3.2.1 Preparación de la membrana.

Se utilizaron membranas de Nylon Hybond-NX de la Compañía Amersham, las cuales se remojaron durante 1 hora en solución SSC 20X (NaCl 7.6 M, C₆H₅Na₃O₇ 0.3 M, PH =7.0). Se colocó sobre 5 papeles humedecidos con SSC 20X, se montó en el aparato de vacío y cada pozo se lavó 3 veces con SSC 10X. Se desnaturalizaron alícuotas de 10 y 1 µg de cada DNAg de interés (catán, pegelagarto y tiburón) a 95°C durante 5 min.

además de los testigos positivos (PRL de gato y GH de DNAg de humano) y del control negativo (pBS-SK). Se depositaron las muestras y se fijaron al vacío a 80°C durante 2 horas.

4.3.2.2 Marcaje de las sondas

Las sondas fueron marcadas con el estuche comercial RadPrime Labeling System de GIBCO-BRL de la siguiente manera:

Se disolvieron 25 ng de DNA en 10 μ l de H_2O miliQ, se desnaturalizaron a 95°C durante 5 min, se colocaron en hielo inmediatamente y se agregaron los siguientes

reactivos:

dCTP (500 μM)

1 μl

dTTP (500 μM)

1 μl

lμl

Solución de Random Primers (3 μg/μl)

20 μl

UNIVERSID AD AUTONOMA DE NUEVO LEÓN

[α-32P]dATP, a 3000 Ci/mmol

5 μl

Agua destilada

11 μl

Los reactivos se mezclaron y se agregó 1μl del fragmento Klenow de la DNA polimerasa de Escherichia coli (40U/μl), el volumen final fue de 50 μl. La reacción desarrolló durante 2 horas a 37°C y la se detuvo con 5 μl de solución Stop. Una vez marcada la sonda, se purificó por filtración sobre una columna de Sephadex G50 (Sambrook y cols, 1989).

4.3.2.3 Hibridación

La prehibridación se realizó utilizando un volumen de 1ml de solución de hibridación (SSC 6X, reactivo de Denhardt 5X y SDS 0.5%) por cm² de membrana de nylon utilizada, la membrana y la solución se colocaron en un frasco de hibridación y se dejaron agitando a 50°C durante 4 horas, al finalizar se removió la solución y se agregó la solución de hibridación junto con la sonda marcada (GH de tlacuache o PRL de gato). La hibridación se realizó con 0.5 ml de solución de hibridación por cm² de membrana y se dejó agitando toda la noche a 50°C (18 h). Al día siguiente se removió la solución de hibridación y se realizaron los lavados de la membrana; 2 lavados de 15 min con una solución SSC 2X, SDS 0.1% a temperatura ambiente, otros 2 lavados con SSC 1X, SDS 0.1% a temperatura ambiente, otros 2 lavados de 15 min a 50°C con SSC 0.1X, SDS 0.1%. Una vez terminados los lavados, la membrana se sacó del frasco de hibridación, se envolvió en papel Saran Wrap, se colocó en un chasis y se expuso a una película ultrasensible durante 5 días.

4.3.3 Amplificación de las secuencias de GH, PRL y SLBI IOTECAS

4.3.3.1 Diseño de los iniciadores.

Los iniciadores se diseñaron a partir de secuencias reportadas de los DNAc de las tres hormonas. Las secuencias se obtuvieron del GenBank vía Internet (http://www2.ncbi.nlm.nih.gov/) y fueron alineadas utilizando el programa CLUSTAL W para evidenciar las zonas más conservadas. Para facilitar el diseño de los iniciadores se eligieron las especies de peces que se relacionaran más a los peces primitivos para alinear las secuencias correspondientes. Los iniciadores se diseñaron sobre las regiones

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN

conservadas, y dando preferencia a las secuencias de peces considerados ancestrales. Para el diseño de los iniciadores se utilizaron los programas Oligo 4.0 y Amplify 5.1. Estos programas permitieron controlar los factores como: las temperaturas de alineamiento (Tm), los malos apareamientos, los dímeros entre los pares de iniciadores, entre otros factores. Adicionalmente, la especificidad de los iniciadores se probó con el programa Blast.

4.3.3.2 Reacción de RT.

Los iniciadores diseñados se utilizaron para tratar de amplificar los DNAcs correspondientes a la familia GH, PRL y SL a partir de RNA de cabezas de larvas de catán y de RNA de cabezas de juveniles de tilapia. Este último se utilizó como control positivo para los iniciadores de PRL.

Los DNAcs se sintetizaron a partir de RNA total (RNAt) utilizando hexámeros al hazar. Se utilizaron reactivos de GIBCO-BRL para preparar la reacción mostrada en la Tabla 2.

DIRECCIÓN GENERAL DE BIBLIOTECAS

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN

Tabla 2.- Condiciones para la RT

DTT 0.1M

UNIVERSI DNTP's 10 mM

	Concentración final	
RNA de larvas de catán	50ng/µl	.
(200ng/μl)		
Hexámeros al azar	2.5μΜ	- ,
Agua miliQ	cbp12µl	
La reacción se incubó le los siguientes reactivos:	0 min a 70°C, el tubo	se centrifugó 3 segundos y se agregaron
	Concentración	nal
Buffer 5X de primera cao	lena 1X	

DIRECCIÓN GENERAL DE BIBLIOTECAS

La reacción se incubó 2 min a 42°C, se agregó 1μl de la enzima SuperScript II (200U/μl), quedando el volumen final de 20 μl y se realizó el siguiente programa:

UTONOMA DE NUEVO LEÓ

0.01M

0.5Mm

10 min a 25°C, 50 min a 42°C y 15 min a 70°C.

4.3.3.3 PCR.

Una vez sintetizados los DNAs, las PCRs se realizaron utilizando los oligonucleótidos diseñados, bajo las condiciones descritas en la Tabla 3.

Tabla 3 .- Condiciones estándar para la PCR.

Componentes	Concentración final
Amortiguador de la reacción	1X
MgCl ₂ , (25mM)	2 mM
DNTPs	0.2 mM
Iniciador 5 Veritatis	0.15μΜ
Iniciador 3	0.15μΜ
DNA polimerasa Taq	0.05U/µl
Agua miliQ estéril cbp	50µl

(Volumen final de la reacción = 50 μl) UNIVERSIDAD AUTONOMA DE NUEVO LEÓN

Después de un paso inicial de desnaturalización a 94°C por 5 min, las amplificaciones se llevaron a cabo durante 40 ciclos. Aunque se utilizó el mismo programa para todas las amplificaciones, la temperatura de alineamiento (Tm) fue específica para cada juego de iniciadores; las temperaturas utilizadas para GH de catán fueron de 55°C para CN1 y CN2 y 52°C para CT5 y CT3; en el caso de PRL la Tm fue de 56°C para PRL1 y PRL2 y para SL se utilizó una Tm de 57°C para SL1 y SL2. Los ciclos consistieron en un primer paso de desnaturalización a 94°C durante 1 min, un segundo paso de apareamiento a la Tm de cada juego de iniciadores durante 1 min y un tercer paso de extensión a 72°C

durante 1 min. Al finalizar los 40 ciclos, se llevó a cabo un paso de extensión a 72°C durante 5 min.

4.3.3.4 Análisis electroforético.

Una vez obtenidos los PA, éstos se analizaron por electroforesis en geles de agarosa al 2%. Los geles prepararon con TBE 0.5X (Tris-borato 0.089 M. ácido bórico 0.089M). El gel solidificado se colocó en una cámara de electroforesis, la cual contenía el mismo buffer. Las muestras se mezclaron con jugo azul 6X (azul de bromofenol al 0.25 %, xilencianol al 0.25 % y glicerol al 30%) y fueron depositadas en el gel. La electroforesis se corrió a 95 V y una vez terminada, el gel se tiñó con bromuro de etidio durante 5 a 10 min, se lavó con agua y se procedió a observarlo en el Gel Doc.

El tamaño de los PA se determinó con el programa Molecular Analyst del Gel Doc, utilizando un marcador de tamaño adecuado.

4.3.3.5 Caracterización de los productos de PCR.

Los PA fueron caracterizados por digestión enzimática. Para los de PRL y SL se tomaron en cuenta las enzimas que tuvieran cortes en zonas conservadas del DNAc de diferentes especies de peces, mientras que en el caso de la GH de catán se tomó como referencia el DNAc del pez *Lepisosteus osseus*, el cual se eligió por pertenecer a la misma familia del catán. Se realizaron cortes con las enzimas *Pst* I y *Bgl* II, siguiendo las instrucciones de la casa comercial (NEB).

4.3.4 Clonación y análisis de los PA

4.3.4.1 Preparación del vector T

La técnica utilizada para la clonación de los PA fue la del vector T (Marchuk y cols, 1990), la cual está basada en la actividad de transferasa terminal independiente del templado de la enzima Taq DNA polimerasa, que permite la adición de un deoxiadenosina monofosfato (A) en los extremos 3' de los productos de PCR. Al vector de clonación se le agregaron residuos de timina en los extremos 3' complementarios a los de adenina de los productos amplificados.

Las clonaciones se realizaron utilizando el vector de clonación pBS-SK de la compañía Stratagene. Par la preparación del vector T se utilizaron 2.5 μg de DNA plasmídico previamente linearizado con la enzima *Eco* RV, que fueron incubados con 1.25 U/μg de la enzima DNA polimerasa Taq, 2 mM de dTTP y 2mM de MgCl₂ en un volumen final de 20μl. La reacción se realizó durante 3 horas a 72°C. Una vez preparado, el vector T se almacenó a –20°C hasta su utilización.

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN

4,3.4.2 Ligación y transformación ERAL DE BIBLIOTECAS

Los productos de PCR y el vector T se sometieron a ligación en un volumen final de 25 μl con una relación inserto:vector de 1:3. La reacción se incubó durante toda la noche a 16°C y los 25 μl se utilizaron para transformar 100μl de células Top 10 Ca⁺⁺ competentes.

Para preparar las células competentes se utilizó una modificación del método de Inoue (Inoue y cols, 1990) que se describe a continuación. Se inocularon 4 ml de medio LB (bactotriptona 1%, extracto de levaduras 0.5%', NaCl al 1% y tetraciclina 5 µg/ml), con

100 μl de bacterias de *E. coli* Top 10 y se dejaron crecer toda la noche. Al día siguiente, se inoculó 1 ml del medio LB en 50 ml de medio SOB (bactotriptona 2%, extracto de levadura 0.5%, NaCl 10 mM, KCl 2.5 mM, MgCl₂ 10 mM, Mg SO₄ 10 mM, pH 6.7-7.0) y se dejó crecer a 37°C hasta alcanzar una DO₆₀₀ de 0.4, después se colocó en hielo durante 10 min, el medio se centrifugó a 2500g (5000 rpm) durante 10 minutos a 4°C y las células se resuspendieron gentilmente en 20 ml de CaCl₂ 0.1 M frío. Se colocaron en hielo durante 20 min, después de una centrifugación a 2500 g (5000 rpm) por 10 min a 4°C, se removió el CaCl₂ y las células se resuspendieron gentilmente en 2 ml de CaCl₂.

Para transformar se incubaron 100 μl de bacterias con los 25 μl de la reacción de ligación a 4°C por 30 min, se realizó un choque térmico a 42°C por 90 s, se agregaron 900 μl de medio LB a las células y se incubaron (en agitación) a 37°C por 1 h. Las bacterias que recibieron el inserto se seleccionaron por su fenotipo AMP^R, β-gal, siendo las colonias blancas posibles portadoras de los insertos.

4.3.4.3 Extracción del DNA plasmídico OMA DE NUEVO

Para seleccionar las clonas portadoras de los insertos se extrajo el DNA plasmídico por el método de lisis alcalina (Sambrook y cols, 1989). Se creció una colonia de bacterias en 3 ml de medio LB + antibiótico (tetraciclina 10 μg/ml) y se mantuvo con agitación vigorosa de 250 rpm durante la noche. Al día siguiente se centrifugaron 1.5 ml del medio de cultivo durante 30 seg a máxima velocidad (14 000 rpm) y se removió el medio del tubo manteniéndolo en hielo. La pastilla resultante se resuspendió en 100 μl de solución I (glucosa 50mM, Tris-Cl 25 mM, pH 8, EDTA 10 mM, pH 8) utilizando el vórtex. Se agregaron 200 μl de solución II (0.2 ml de NaOH 10 N, 1.0 ml de SDS 10% y

8.8 ml de agua) recién preparada (8.8 ml de agua + 0.2 ml de NaOH 10 N + 1 ml de SDS 10%), la solución se mezcló rápidamente por inversión (5 veces), y se incubó 5 min en hielo.

Se agregaron también rápidamente 150μl de solución III fría, el tubo tapado invertido se agitó al vórtex o con la mano rápidamente y se incubó en hielo 5 min. Se centrifugó 5 min a 4 °C y el sobrenadante se transfirió a un tubo nuevo. El DNA plasmídico se extrajo con un volumen de fenol:cloroformo (1:1), aproximadamente 190 μl de cada uno, mezclando al vórtex 1 min. Después de centrifugar 2 min a 4°C, el sobrenadante se transfirió a un tubo nuevo. Se precipitó el DNA plasmídico con 2 volúmenes de etanol (95-100%) a temperatura ambiente, mezclando al vórtex y dejando reposar 2 min. Se centrifugó a 12,000 g por 5 min a 4°C. Se removió completamente el sobrenadante por aspiración y se dejó el tubo invertido sobre una toalla de papel. Se lavó la pastilla con 1 ml de etanol al 70% frío y se centrifugó medio minuto. Se removió el etanol y se dejó secar la pastilla al aire por 10 min. Por último el DNA plasmídico se disolvió en 50 μl de TE con RNAsa pancreática (20 μg/ml).

DIRECCIÓN GENERAL DE BIBLIOTECAS

4.3.4.4 Análisis de las clonas recombinantes

Los DNAs se analizaron por electroforesis en un gel de agarosa al 0.8 %. Las clonas que tuvieron menos desplazamiento que el pBS-SK se cortaron con las enzimas Sac I y Kpn I, para liberar los fragmentos clonados. Los productos de la digestión se corrieron en un gel de agarosa al 1%. Una vez identificados los fragmento por el peso molecular, las clonas se caracterizaron con las enzimas seleccionadas, los fragmentos se observaron en un gel de agarosa al 2%.

4.3.4.5 Determinación de las secuencias nucleotídicas

La secuencia de las clonas resultantes se determinó por secuenciación cíclica con una adaptación de terminación en cadena (Sanger y Nicklen., 1977). Los iniciadores que se utilizaron fueron los primers universales (M13 forward y reverso) que se aparean en el plásmido pBS-SK. La secuenciación enzimática se realizó con el Kit de LiCor. Los fragmentos sintetizados se marcaron al incorporar el análogo marcado con un cromógeno IR y se resolvieron en un gel de acrilamida al 6%- urea 50%, utilizando el secuenciador LiCor DNA 2000.

4.3.4.6 Análisis de las secuencias nucleotídicas

Una vez obtenidas, las secuencias se compararon en Internet mediante el programa BLAST con las secuencia reportadas en el GenBank. Se realizaron también alineamientos utilizando el programa Clustal W. En el caso del catán se construyó un árbol filogenético con la secuencia de la clona de GH comparándola con las secuencias de peces ancestrales utilizando el método de la Máxima Parsimonia, en el programa DNApars (del paquete Phylip).

CAPITULO V

RESULTADOS

5.1.- Extracción de DNAg

Los DNAg se extrajeron de tejido muscular de los diferentes peces y de placenta humana a partir de muestras conservadas a en nitrógeno líquido o a -70°C. Como se puede apreciar en la Figura 6, los DNAg de tiburón y catán presentaron degradación parcial, mientras que los de placenta humana y pegelagarto fueron de buena calidad. Además, en cada preparación se cuantificó el DNA por espectrofotometría. Del tejido de placenta humana se lograron obtener 0.328 mg, de pegelagarto 0.18 mg, del tejido de catán 0.231 mg y de tiburón 0.331 mg.

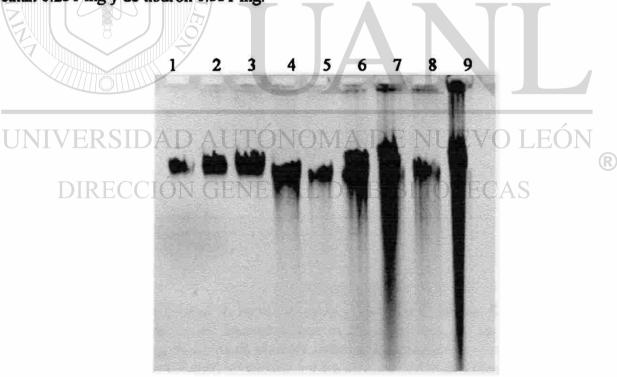


Figura 6.- DNAg de las diferentes especies de peces. Se depositó 1 µl de cada muestra de DNAg en un gel de agarosa al 0.8%. Los carriles 1, 2 y 3 corresponden al DNAg extraído de placenta, los carriles 4 y 5 al DNAg de pegelagarto, los carriles 6 y 7 al DNAg de catán y los carriles 8 y 9 corresponden al DNAg de tiburón.

5.2 Extracción del RNA total a partir de cabezas de larvas de catán y de juveniles de tilapia.

Los RNA totales (RNAt) fueron extraídos de tejidos frescos, de cada muestra se realizaron dos extracciones y los RNAt obtenidos se observaron en geles desnaturalizantes de agarosa. Una vez que se observó la calidad de los RNAs obtenidos, éstos fueron cuantificados por espectrofotometría. De las larvas de catán de 3 días se obtuvieron en promedio 0.1 mg, de las larvas de 7 días 0.15 mg y de las muestras de tilapia 0.11 mg de RNA total. (Figura 7).

Figura 7.- RNA total de cabezas de larvas de catán y juveniles de tilapia. Se depositó 1 μl de cada muestra de RNAt en un gel desnaturalizante al 1% de agarosa. En los carriles 1 y 2 se depositaron 200 y 500 ng de RNAt de placenta humana, los carriles 3 y 4 corresponden a los RNAs de larvas de catán de 3 días, los carriles 5 y 6 a larvas de catán de 7 días, y los carriles 7 y 8 a RNAs de juveniles de tilapia.

5.3 Identificación de los genes de GH y PRL en el catán

Mediante la técnica de hibridación de Slot-Blot se evidenciaron los genes de GH y PRL en el DNAg del catán, pegelagarto y tiburón. En un primer paso se realizó la hibridación con la sonda de GH (DNAc de tlacuache). Una vez obtenida la autorradiografía (Figura 8A), la membrana fue lavada con SDS hirviendo al 1%, se dejó enfriar y se reutilizó para la hibridación con la sonda de PRL (exón III-V del gato)(Figura 8B). En la membrana se lograron observar, con la sonda de GH, manchas radiactivas para los DNAg de catán, pegelagarto y tiburón, así como en el control positivo. Después de la hibridación con la sonda de PRL de gato se obtuvo señal para los DNAg de catán, pegelagarto, humano y tiburón. En este último las bandas se observaron muy débilmente.

Los controles negativos no presentaron señal en ambos ensayos. Los PA de PRL dieron positivo con la sonda de PRL y se observa una señal muy débil con la sonda de GH.

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN ©
DIRECCIÓN GENERAL DE BIBLIOTECAS

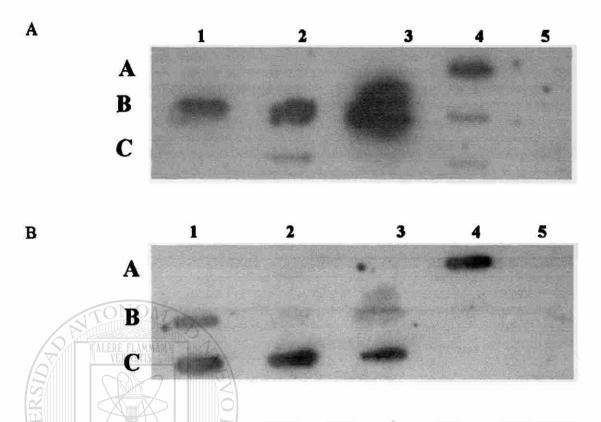


Figura 8.- Hibridaciones en Slot-Blot de los genes de GH y PRL. En la figura A se observan señales de radiactividad con la sonda de GH para los DNAg de catán (B1 y B2), de pegelagarto (B3 y B4) y débilmente para el del tiburón (C4 y C5). En la figura B se muestra el ensayo con la sonda de PRL, se observan señales en catán (B1 y B2), pegelagarto (B3 y B4) y humano (A4). Los carriles C1, C2 y C3 corresponden a 4, 2, y 1 ng de PA de PRL de gato. Como testigos positivo y negativo se utilizaron el DNAg humano (A4) y el plásmido pBS-SK (B5), respectivamente.

VERAL DE BIBLIOTECAS

5.4 Diseño de los iniciadores

5.4.1 Iniciadores de PRL.

Se realizó la búsqueda de secuencias de PRL en peces y se obtuvieron solamente 13 secuencias reportadas a la fecha. Todas las secuencias pertenecen a los peces óseos evolucionados. Por lo tanto, para el diseño de los iniciadores de PRL se utilizaron secuencias de peces teleósteos (Salmo salar, Anguilla anguilla, Tilapia nilotica y Cyprinus carpio), ya que no se han reportado secuencias nucleotídicas para peces que pertenzcan a la familia del catán. Los iniciadores fueron diseñados sobre zonas

Estudio Molecular de la Familia GH/PRL/SL en el Catán

conservadas de los DNAc en los exones II y V (Figura 9) y fueron los siguientes:

5' GTC AAA CTT CAC TCT CTC AGC 3' PRL1

5' TGT CAA TTT TGT GGG AGT C 3' PRL2

Estos primers amplifican, teóricamente, un fragmento de 480pb en peces teleósteos.

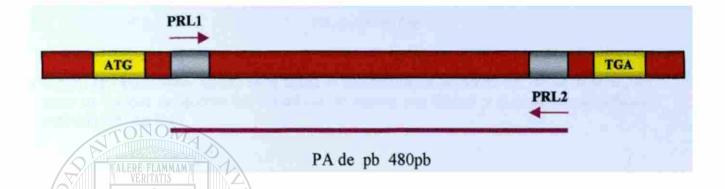


Figura 9.-. Iniciadores de PRL- En la figura se esquematiza la estructura del DNAc de la PRL. Los sitios en los que se aparean los iniciadores se muestran con flechas y el producto amplificado esperado con una linea.

5.4.2 Iniciadores de SL.

En la búsqueda de secuencias de la SL en el GenBank se encontraron 15 secuencias de SL en peces; 14 de ellas pertenecen a peces óseos evolucionados y una a un pez óseo no teleósteo (Acipenser transmontanus). Para diseñar los iniciadores de SL en peces, se alinearon las secuencias de algunos peces teleósteos (Carassius auratus, Anguilla anguilla, Solea seleganensis) y la de un pez no teleósteo ancestral (Acipenser transmontanus). Los iniciadores se diseñaron en zonas conservadas del DNAc de SL en los exones II y V (Figura 10) y fueron los siguientes:

5' GCT CCC TGG AGA AGC TCC TGG 3' SL1

5' TGG GCG TCT TTC CTG AAG CAG 3' SL2

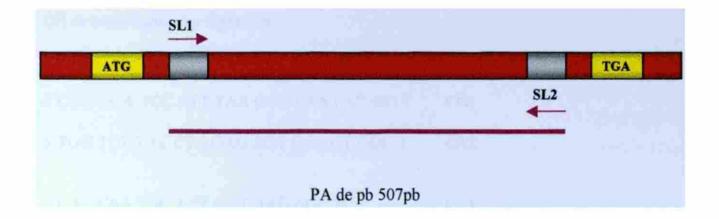


Figura 10.- Iniciadores de SL. En la figura se esquematiza la estructura del DNAc de la SL, los sitios en los que se aparean los iniciadores se indican con flechas y el producto amplificado esperado con una línea.

5.4.3 Iniciadores de GH.

Para realizar el análisis de las secuencias de GHs en peces se realizó la búsqueda en el GenBank y se encontraron 88 secuencias de GHs de peces reportadas a la fecha, de las cuales 84 correspondían a peces óseos evolucionados (teleósteos), una a peces cartilaginosos y 3 a peces óseos no teleósteos (Amia calva, Acipenser transmontanus y Lepisosteus osseus). Al alinear todas las secuencias mediante el programa Clustal W, las regiones conservadas fueron escasas; por lo tanto para el diseño de los iniciadores GH de catán se tomaron en cuenta los peces mas cercanos a este pez (Amia calva, Anguilla anguilla y Lepisosteus osseus), dando preferencia a la secuencia del pez Lepisoteus osseus que pertenece a la misma familia del catán. Se diseñaron dos juegos de oligonucleótidos (Figura 11). El primero (CN1 y CN2) amplifica toda la secuencia codificante, desde el codón de inicio (CN1), hasta el de terminación (CN2) y el segundo (CT5 y CT3) se alinea en zonas más conservadas, del exón II (CT5) y del exón V (CT3) (Figura 9).

Las secuencias de los oligonucleótidos que se diseñaron para amplificar el DNAc de la GH de catán fueron las siguientes:

5' CGA GGA TCC ATT TAA GGC AAA CAT GG 3' CN1

5' TGG TCT TAT CTA GAG AGT GCA GTT GC 3' CN2

5' CAC CAA TGC ACT GAT AAG AGC 3' CT5

5' AAG TCT CCA CTT TGA GCA TGT C 3' CT3

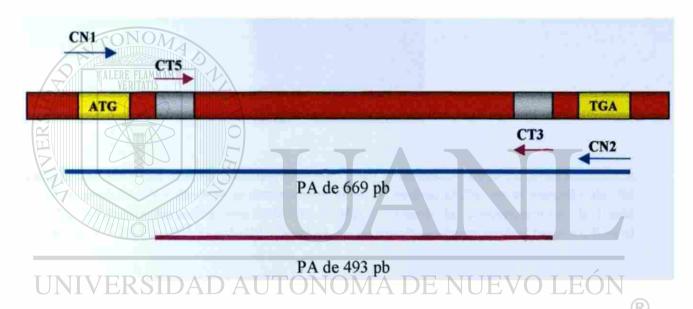


Figura 11.- Iniciadores diseñados para GH en catán. En la figura se esquematiza el DNAc de la GH del catán, se indican con flechas los sitios en los que se aparean los iniciadores y los PA esperados.

5.5 Ensayos de RT-PCR con los iniciadores de SL y PRL

5.5.1 SL

5.5.1.1 Ensayos de RT-PCR

Una vez sintetizados los DNAcs, se optimizó la reacción de PCR realizando titulaciones de MgCl₂. En el caso del catán, se obtuvieron PA del tamaño esperado (Figura 12), mientras que para la tilapia no se logró obtener ningún PA.

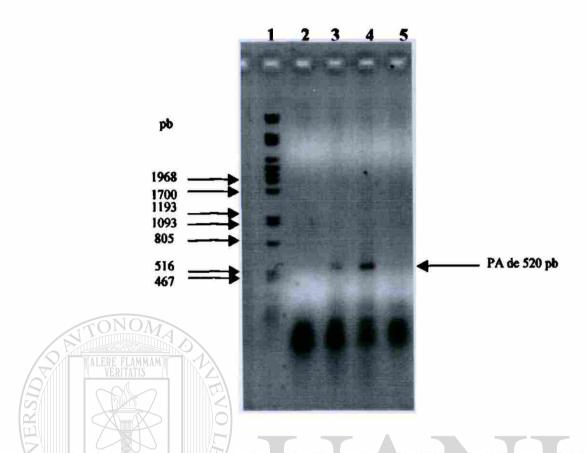


Figura 12.- RT-PCR con los iniciadores de SL. Los PA obtenidos con el juego de iniciadores de SL a partir de RNA de catán se corrieron en un gel de agarosa al 2% con el marcador de PM λ + Pst I (Carril1). Se realizó una titulación de MgCl₂ variando las concentraciones de 1 mM (Carril 2), 1.5 mM (Carril 3) y 2 mM (Carril 4). Se incluyó también un control negativo (Carril 5).

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN 5.5.1.2 Clonación y secuenciación del PA.

Una vez obtenidos los PA de SL, se procedió a su clonación y secuenciación. De las cinco clonas levantadas, cuatro de ellas tuvieron un desplazamiento menor que el pBS-SK. Al cortarlas con las enzimas *Eco* RI y *Hin*d III, tres clonas liberaron un fragmento del tamaño esperado (520 pb) (Figura 13), la última presentó un sitio interno para una de las enzimas y liberó dos fragmentos de menor tamaño. Se secuenció un ejemplar de cada tipo de clona.

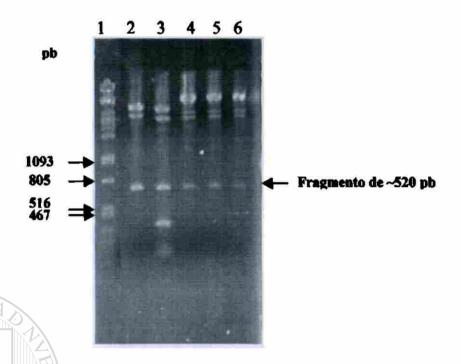


Figura 13.- Clonas candidatas para SL de catán. Las clonas obtenidas a partir de los PA obtenidos con los iniciadores de SL se caracterizaron con las enzimas Eco RI y Hind III. Los productos de la digestión se analizaron en un gel de agarosa al 0.8%. Tres de las clonas liberaron un fragmento del tamaño esperado (carriles 2, 4, 5 y 6), la clona 2 (carril 3) liberó dos fragmentos. El marcador de PM es $\lambda + Pst$ I (carril 1).

Las secuencias obtenidas se compararon mediante el BLAST con las secuencias reportadas en el GenBank. Ninguna de las dos secuencias correspondió a SL o alguna hormona relacionada con la familia GH/PRL/SL, no se pudieron tampoco relacionar con otra secuencia ya reportada.

5.5.2 PRL

5.5.2.1 Ensayos de RT-PCR con los iniciadores de PRL en Catán

Los iniciadores fueron probados con los DNAcs de larvas de catán, utilizando una temperatura de alineamiento de 50°C. Se amplificaron dos bandas, una de ellas que correspondía al tamaño esperado (480 pb) y otra banda más pequeña que se amplificó

débilmente. Los PA del tamaño esperado fueron clonados y secuenciados para verificar que correspondían a PRL (Figura 14).

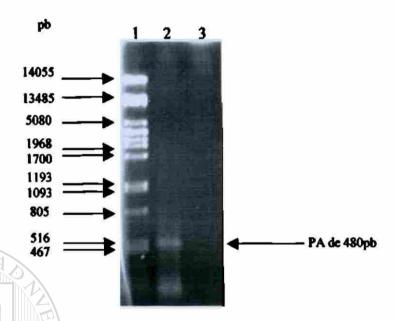


Figura 14.- Productos de amplificación obtenidos por RT-PCR con los primers de PRL (PRL1 y PRL2) en catán. Los PA se obtuvieron utilizando concentraciones de 2 mM de MgCl₂ (carril 2), se corrieron en un gel de agrosa al 2%. Se incluyeron en la electroforesis un control negativo de la reacción (carril 3) y el marcador de PM λ + Pst l (carril 1).

5.5.2.2 Clonación y secuenciación del PA

Una vez obtenidos los PA en catán, se procedió a clonarlos por medio de la técnica de vector T en el plásmido pBS-SK. Se levantaron 11 colonias y cuatro de ellas liberaron un inserto con las enzimas *Eco* RI y *Hin*d III.

Las cuatro clonas presentaron un inserto del mismo tamaño (593 pb), que era el esperado (Figura 15). Se secuenció la clona 11 (Figura 16A) y la secuencia se mandó comparar mediante el BLAST en el GenBank, los resultados indicaron que la clona no correspondía a PRL, ya que no tenía semejanza con las secuencias de PRLs de otros peces ya reportadas. Como en el caso de la SL, el PA no se pudo relacionar a otra secuencia reportada, como lo indica el reporte del BLAST (Figura 16B).



Figura 15.- Clonas candidatas para PRL de catán. En el gel se muestran las clonas 5, 7, 9 y 11 sin digerir (carriles 2, 4, 6 y 8 respectivamente) y digeridas (carriles 3, 5, 7 y 9 respectivamente), se incluyeron también los marcadores de PM $\lambda + Pst$ I (Carril 1) y pUC + Hae III (carril 10).

(A) Secuencia de la Clona 11

gggagacaggatggacggtgttgataaacggctgaatgtgcggtggattgtcgattttcgttataagagtagtaccagt gcagttagtgttccagtctatcttgtgctgactgttgctttgctgatgctgtgcagttgtgctgtacaaggtttatgggtctc aggatgagtccagggccatgaagaaacagtcctgatagtgtcaggaaagatagcgcattgacacattcttcgcaggac agctttggaggtaaacgctgtgcagtgtttttcaagtacagtgacctgctcaccgtaagactgtgttgtgatgctagtcac caatccatctgaaggattatactca

(B)
BLAST DIRECCIÓN GENERAL DE BIBLIOTECAS
Secuencias que producen alineamientos significativos (bits) Valor
gb|AC005237.2|AC005237 Homo sapiens BAC clone RP11-556H17 f...

gb AC005237.2 AC005237 Homo sapiens BAC clone RP11-556H17 f	<u>36</u> 6.0
gb AC009405.3 AC009405 Homo sapiens BAC clone RP11-175M21 f	<u>36</u> 6.0
gb AC006161.2 AC006161 Arabidopsis thaliana chromosome II s	<u>36</u> 6.0
gb AF067132.1 HSPPPR3 Homo sapiens protein phosphatase-1 re	<u>36</u> 6.0
gb AF033856.1 AF033856 Agrobacterium tumefaciens glycogen o	<u>36</u> 6.0
emb AL445208.11 AL445208 Human DNA sequence from clone RP11	<u>36</u> 6.0
emb AL133305.2 CNS01DUO Human chromosome 14 DNA sequence **	<u>36</u> 6.0
emb AL022158.1 HS326113Homo sapiens DNA sequence fromPAC	<u>36</u> 6.0

Figura 16.- Secuencia de la Clona 11 y resultados del BLAST. Se muestra la secuencia de la clona 11 para PRL de catán (A), la secuencia se mandó comparar mediante el BLAST y los resultados indicaron que no está relacionada a PRL (B).

5.5.2.3 RT-PCR con los iniciadores de PRL en tilapia.

La Tilapia nilotica es una especie que pertenece a los peces óseos modernos y se encuentra făcilmente en la región. La reacción de RT se realizó a partir de RNA de cabezas de juveniles. Una vez realizada la estandarización de la PCR, se amplificaron dos bandas de tamaño muy semejante (Figura 17). Las mejores condiciones de amplificación fueron a 56°C, con 1 µl de DNAc de la RT y 2 mM de MgCl₂. Las bandas se resolvieron en un gel de agarosa al 2 % y la banda superior (458 pb) fue purificada con el estuche de Quiaex II (Figura 18). Una vez purificada, la banda superior se

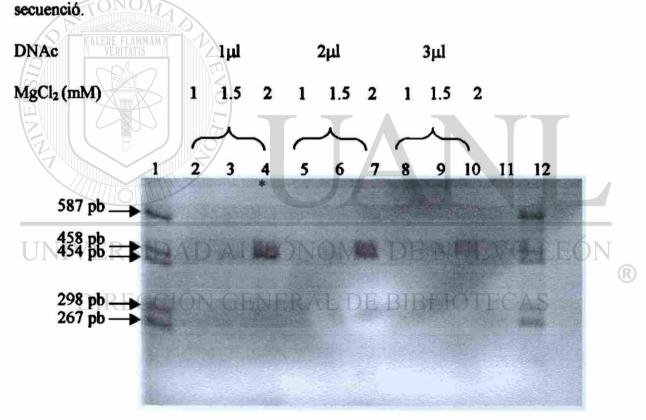


Figura 17.-Estandarización de la PCR para PRL en Tilapia nilotica. Para la obtención de la secuencia de PRL de tilapia se realizó la estandarización de la PCR con titulaciones de DNAc (1, 2 y 3 μl) y de MgCl₂ (1, 1.5 y 2 mM), así como variando la temperatura de alineamiento. Se muestra el resultado de las amplificaciones a 56°C con las titulaciones correspondientes, el marcador de PM fue pUC + Hae III (M) y se incluyó en el gel el control negativo de la reacción de PCR (Carril 11). El asterisco muestra la reacción de PCR que dio los mejores resultados y de la cual se purificaron las bandas para la secuenciación.

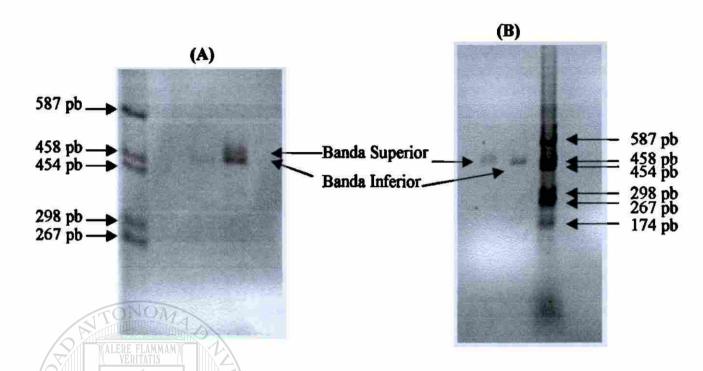


Figura 18.- Purificación de los PA. Las 2 bandas obtenidas de la amplificación con los iniciadores para PRL en Tilapia fueron purificadas. En el gel A, se muestran el marcador de peso molecular (M) y las 2 bandas obtenidas durante la PCR (Carril 3) y en el gel B se muestran el marcador de peso molecular y las bandas superior e inferior purificadas con el estuche comercial Quiaex II. Ambos geles fueron de agarosa al 2% y en los 2 se utilizó el marcador de peso molecular pUC + Hae III.

La secuencia se mandó comparar con el BLAST en el GenBank y comparte alta similitud con la secuencia de PRL de tilapia reportada previamente (número de acceso gb|M27010.1), así como a menor grado con otras secuencias de PRL de peces tales como el salmón, la trucha, el pez dorado, la carpa, entre otros (Figura 19). Este resultado permitió corroborar la eficacia de los iniciadores.

(A)

PA de 458 pb

(B) Alineamiento

>gb|M27010.1|TILPROLACA Tilapia nilotica prolactin mRNA, complete cds, clone ptiPRL-I

Query: 48 aggtgaacccatcttactagatagtacatccaggc-atccttgagacttttggagtactg 106 Sbjct: 497 aggtgaacccatcttactagatagtacatccaggccatccttgagacttttggagtactg 438 Query: 107 ctgcatctcctggatcttqttgaatataqtqctttqtqctqqqtqaqqcaqqqtactaqc 166 Sbjet: 437 ctgcatetectggatettgttgaatatggtgetttgtgetgggtgaggcagggtaetage 378 V83.10.1111.1117/11114.1411114.14111.011114.011114.011114.1414.141111111 Query: 227 catcaaatctgactctgacacttgaagtgcttggcccttgtcaatgggcgtctgtagaga 286 Sbjct: 317 catcaaatctgactctgacacttgaagtgcttggtccttgtcaatgggcgtctgtagaga 258 Query: 287 ggaggtgtggcacattgcaggccgcggcatgatcaccctgcctataggagggaagcgaga 346 IKONDI PANDI PALUTITUTNI O IMLACITUTUT PILLITE MIDITOTE O PIL Sbjct: 257 ggaggtgtggcacattgcaggccgcggcatgatcaccctgcctataggagggaagtgaga 198 Query: 347 getcagetcetggg 360 FRALDE BIBLIOTECAS Sbjct: 197 gtccagctcctggg 184

Figura 19. Secuencia de PRL de Tilapia nilotica. (A) Se muestra la secuencia de 459 pb obtenida de la banda superior correspondiendo a la amplificación del DNAc de PRL con los iniciadores consenso diseñado. (B) La secuencia obtenida se alineó con la secuencia previamente reportada para la PRL de tilapia en el GenBank. Las diferencias se resaltan en rojo (B). La secuencia encontrada tiene una semejanza del 98 % con la reportada por Rentier-Delrue y cols en 1989.

5.6. Obtención de la GH de catán

5.6.1 Ensayos de RT-PCR

Con el primer juego de iniciadores que abarcaban toda la secuencia codificante de la GH (CN1 y CN2), no se logró obtener bandas de amplificación. Aun probando diferentes temperaturas de alineamiento, cantidades de DNAc y de MgCl2, las amplificaciones resultaron inespecíficas y las caracterizaciones de los PA no correspondían al patrón esperado. En un siguiente paso se probó el segundo juego de iniciadores diseñados sobre regiones conservadas de los exones II y V del gen de la GH. Con éstos se amplificó una banda del tamaño esperado (493 pb). El PA se caracterizó con las enzimas *Pst* I y *Bgl* II, que fueron seleccionadas a partir de la secuencia del DNAc de la GH del pez

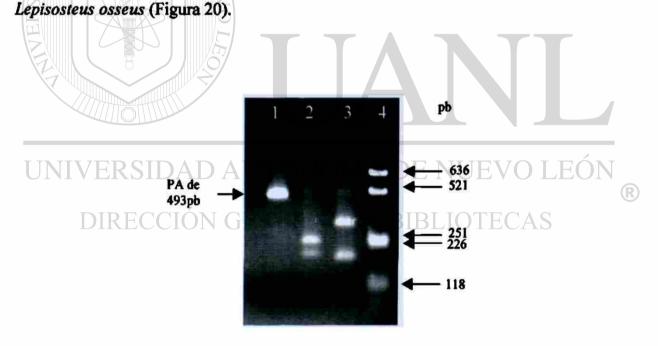


Figura 20.- Caracterización del PA de GH de catán. El PA obtenido con los iniciadores de GH (carril 1) se caracterizó con las enzimas Pst I (carril 2) y Bgl II (carril 3) y los productos de las digestiones se corrieron en un gel de agarosa al 2%. En el carril 4 se observa el marcador de PM pUC + Alu I.

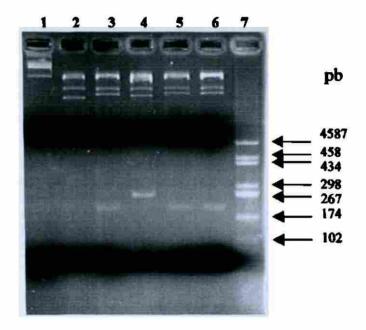


Figura 22.- Caracterización de las clonas con la enzima Pst I. Las clonas obtenidas se digirieron con la enzima Pst I. Las clonas 1, 3 y 4 (carriles 3, 5 y 6) presentaron un inserto invertido en comparación con la clona 2 (carril 4). En el gel también se muestran pBS-SK sin digerir (carril 1), una clona sin digerir (carril 2) y el marcador de PM, pUC + Hae III (Carril 7).

5.6.3. Determinación y análisis de la secuencia

Una vez seleccionadas las clonas candidatas, se procedió a la secuenciación de dos de ellas. Se eligieron las clonas 1 y 2 para obtener la secuencia del fragmento en sentido recto (Clona 2) e invertido (Clona 1). Se obtuvieron 2 secuencias de cada clona, ya que se secuenciaron cada una con 2 iniciadores del plásmido pBS-SK, permitiendo la secuenciación de ambas cadenas. Las cuatro secuencias se compararon entre sí y resultaron idénticas. Esto permitió establecer la secuencia completa del PA (493 pb). La secuencia determinada se mandó comparar con el BLAST en el GenBank. encontrando una similitud con la GH de *Lepisosteus osseus* (Figura 23A). El alineamiento de las secuencias de GH de catán y de *L. osseus* muestra sólo 7 cambios nucleotídicos que se

traducen en un solo cambio aminoacidico de una Valina por una Alanina (Figura 23B).

La secuencia de la GH del catán se alinea además con GHs de diferentes especies de peces, como la Anguila, y Amia.

(A) Resultado del BLAST para GH de Catán

Resultado del BLAST para OTT de Catali	
Secuencias que producen alineamientos significativos (bits)	Valor
gb S82528.1 S82528 growth hormone [Lepisosteus osseus=long 902	0.0
gb AF134596.1 AF134596 Lepisosteus osseus growth hormone (G 264	4e-68
gb S73969.1 S73969 growth hormone [Amia calva=bowfin, mRNA 131	4e-28
gb AF052192.1 AF052192 Trichosurus vulpecula growth hormone 74	7e-11
gb AF312023.1 AF312023 Monodelphis domestica somatotropin P 66	2e-08
gb AF134597.1 AF134597 Amia calva growth hormone (GH) gene, 56	2e-05
gb M24066.1 ANGGROHOR Anguilla japonica growth hormone mRNA 54	7e-05
gb AF193797.1 AF193797 Xenopus laevis growth hormone A mRNA 50	0.001
	0.001
The state of the s	0.004
gb AF231941.2 AF231941 Pseudosciaena crocea growth hormone 48	
gb AF065165.1 AF065165 Sciaenops ocellatus growth hormone p 48	0.004
gb/AF193798.1 AF193798 Xenopus laevis growth hormone B mRNA 48	0.004
gb AF063834.1 AF063834 Sciaenops ocellata growth hormone pr 48	0.004
gb U89917.1 SSU89917 Sebastes schlegeli growth hormone (KrG 48	0.004
emb X14602.1 (XLGHB Xenopus laevis mRNA for growth hormone B 48	0.004
gb(AF062746.1 AF062746 Bufo marinus growth hormone precurso 46	0.016
gb U02929.1 ECU02929 Equus caballus growth hormone (ecGH) m 46	0.016
gb U92533.1 CFU92533 Canis familiaris growth hormone (GH) g 44	0.065
gb AF069071.1 AF069071 Canis familiaris growth hormone (GH) 44	0.065
gb S78184.1 S78184 growth hormone [beagle dogs, mammary tis 44	0.065
emb X53325.1 SSPGH S.scrofa growth hormone mRNA 44	0.065
gb U19788.1 SSU19788 Sus scrofa growth hormone mRNA, comple 44	0.065
gb[U19787.1]SSU19787 Sus scrofa growth hormone mRNA, comple 44	0.065
dbj AB031298.1 AB031298 Siganus guttatus mRNA for growth ho 44	0.065
gb[M22761,1]PIGGHMA Pig growth hormone mRNA 44	0.065
	0.065
	0.065
	0.26
gb AY007303.1 Perca flavescens growth hormone (GH) mRNA, c 42	
gb AF086217.1 HUMZC65D06 Homo sapiens full length insert cD 42	0.26
gb AF034386.1 AF034386 Bos indicus growth hormone mRNA, com 42	0.26
emb AL353713.7 AL353713 Human DNA sequence from clone RP5-1 42	0.26
emb X14601.1 XLGHA Xenopus laevis mRNA for growth hormone A 42	0.26
gb L27835.1 PGSGHA Pangasianodon gigas growth hormone (GH) 42	0.26
gb M63713.1 PNAGH Pangasius pangasius growth hormone mRNA, 42	0.26
gb AC007749.3 AC007749 Homo sapiens BAC clone RP11-574016 f 40	1.0
gb[AC007767.3]F5D14 Sequence of BAC F5D14 from Arabidopsis 40	1.0
gb AC004669.2 AC004669 Arabidopsis thaliana chromosome II s 40	1.0
gb L43628.1 SEQGHR Seriola dumerili growth hormone (GH) mRN 40	1.0
gb[M35627.1 SEQPGH S.quinqueradiata growth hormone (GH) mRN 40	1.0
dbj/AB001865.1/AB001865 Coregonus lavaretus DNA for growth 40	
gb AC012085.4 AC012085 Homo sapiens 12 BAC RP11-887P2 (Rosw 38	4.0
gb/AC009517.5/AC009517 Human Chromosome 7 clone RP11-181K7, 38	4.0
	4.0
gb/AF238493.1/AF238493 Cavia porcellus growth hormone mRNA, 38	4.0
gb AF233853.1 AF233853 Cavia porcellus growth hormone precu 38	4.0

(B) Alineamiento de GH de Catán con GH de Lepisosteus osseus

GH_de_L.os CTCCACCAGCTTGCGGCTGATATTTACAAAGATTTTGAGCGCACCTACGTGCCAGAAGAG L H Q L A A D I Y K D F E R T Y V F B B CAGAGACASTCAAGCAAAAGTTCTCCATCTGCCATATGCTATTCTGAGTCCATTCCTGCA CAGAGACASTCAAGCAAAAGTTCTCCATCCGCCATATGCTATTCTGAGTCCATTCCTGCA CAGAGACASTCAAGCAAAAGTTCTCCATCCGCCATATGCTATTCTGAGTCCATTCCTGCA CAGAGACASTCAAGCAAAAGTTCTCCATCCGCCATATGCTATTCTGAGTCCATTCCTGCA CAGAGACASTCAAGCAAAAGTTCTCCATCCGCCATATGCTATTCTGAGAGTCCCTTGCA GH_de_catá GH_de_L.os CCCACTGGCAAAGATGAAGCTCAGCAGAGATCTGATGTGGAGGTCTCTCCAACAGC GH_de_L.os P T G K D E A Q Q R S D V E L L R F S L GCTCTCATCCAGTCCTGGATCAGCCCTCTGCAGACTCTGAGCGGGTGTTCTCCAACAGC GCTCTCATCCAGTCCTGGATCAGCCCTCTGCAGACTCTGAGCGGGGTGTTCTCCAACAGC GH_de_L.os CTCCACCAGCTTCCGACAGGATCTTTGAGAAGCTGCAGGACCTTGAGCAGGGGATC A L I Q S W I S P L Q T L S R V F S M S GH_de_catá GTGACCCTCACAAGGGAAATTGATGAGGGAAGCCCCAGAATTGCAGCCTTCCTGACTCTC GTGACCCTCACAAGGGAAATTGATGAGGGAAGCCCCCAGAATTGCAGCCTTCCTGACTCTC GTGACCCTCACAAAGGGAAATTGATGAGGGAAGCCCCCAGAATTGCAGCCTTCCTGACTCTC GTGACCCTCACAAAGGGAAATTGATGAGGGAACCCCCAGAATTGCAGCCTTCCTGACTCTC GTGACCCTCACAAAGGGAAATTGATGAGGGAACCCCCAGAATTGCAGCCTTCCTGACTCTC GTGACCCTCACAAAGGGAAATTGATGAGGGAACCCCCCAGAATTGCAGCCTTCCTGACTCTC T T T R B I D B G S P R I A A F L T L ACGTATGAGAAATTTGACACCAACCTGAGAAATGACGACCCCCCAGAATTGAGAGAACTACGGG ACGTATGAGAAATTTGACCAACCTGAGAAATGACGACCCCCCAGAATTGAGAGAACTACGGG ACGTATGAGAAATTTGACCAACCTGAGAAATGACGACCCCCTCGATGAACTACCGG ACGTATGAGAAATTTGACACCAACCTGAGAATTGACGACCCCCCAGAATTGAGACACCTCAACCAAC	GH de catá	CACCAATGCACTGATAAGAGCACAGCAC
GH_de_catá GH_de_L.os CTCCACCAGCTTGCGGCTGATATTTACAAAGATTTTGAGCGCACCTACGTGCCAGAAGAG GH_de_L.os L H Q L A A D I Y K D F E R T Y V P E E CAGAGACAGTCAAAGACAAAAGTTCTCCATCTGCCATATTCCTGCACAGTCTTCCTGCA CACAGACAGTCAAAGACAAAAGTTCTCCATCTGCCATATTCCTTCAGTCCATTCCTGCA GH_de_L.os GH_de_catá GH_de_L.os Q R Q S S K S S P S A I C Y S E S I P A CCCACTGGCAAAGACAGAGCTCAGCAGAGAGTTCTGATGTGGAGCTTGCTGCAGATTCTCCTGC GH_de_L.os GH_de_catá GCTCTCATCCAGTCCTGGATCAGCAGAGATTCGATTCTCCAACAGC GCTCTCATCCAGTCCTGGATCAGCCCTTTGCAGACTCTGAGCCGGGTGTTCTCCAACAGC GCTCTCATCCAGTCCTGGATCAGCCCTTTGCAGACTCTGAGCCGGGGGTTTCTCCAACAGC GCTCTCATCCAGTCCTGGATCAGCCCTTTGCAGACTCTGAGCCGGGGGTTCTCCCAACAGC GCTCTCATCCAGTCCTGGATCAGCCCTTTGCAGAACTCTGAGCGGGGGGATC GH_de_L.os L V F G T S D R I F E K L Q D L E R G I GTGACCCTCACAAGGGAAATTGATGAGGGAACTTCAGCCTTCCTGACTCTC GTGACCCTCACAAGGGAAATTGATGAGAGCTGCAGACTTTCCTGACCTTC GTGACCCTCACAAGGGAAATTGATGAGGGAACTTCAGCCTTCCTGACTCTC GTGACCCTCACAAGGGAAATTGATCAGGGAACTTCAGCCTTCCTGACTCTC GTGACCCTCACAAGGGAAATTGATCAGGGAACTTCCTGACCTTCCTGACTCTC GTGACCCTCACAAGGGAAATTGATCAGAGCTGCAGAATTGCACCCTTCCTGACTCTC GTGACCCTCACAAGGGAAATTGATCAGAGGAACTTCCTGACCTTCCTGACTCTC GTGACCCTCACAAGGGAAATTGATCAGAGGAACTTCCTGACCTTCCTGACTCTC GTGACCCTCACAAGGGAAATTGATCAGAGGAACTTCCTGACCTTCCTGACTCTC GTGACCCTCACAAGGGAAATTGATCAGAGGAACTTCCTGACTCTC GTGACCCTCACAAGGGAAATTGATCAGAGGAACTTCCTGACCTTCCTGACTCTC GTGACCCTCACAAGGGAAATTGATCAGAGGAACTTCCTGACCTTCCTGACTCTC GTGACCCTCACAAGGGAAATTGATCAGAGGAACTTCCTGACCTTCCTGACTCTC GTGACCCTCACAAGGGAAATTGATCAGAGGAACTTCCTGACCACCTTCCTGACTCTC GTGACCCTCACAAGGGAAATTGATCAGAGGAAATTGATCAGCGTTCCTGACTCTC GTGACCCTCACAAGGGAAATTGATCAGAGAACTACAGG GH_de_L.os CTTTTAGCTTGTTCACACCAACCTGAGAAATGACCACCTTCCTGACTCTC TTTTAGCTTGTTCACACCAACCTGAGAAATTGACGACGACCTTCCTGATCAGAACTACGGG ACGTATTGAGAAGATTTGACACCAACCTGAGAAATGACCAACCTTCATGAAGAACTACGGG ACGTATTAGCTTGTTCTACAACAACACCTAGAAATGACCAACCTTCATAGAAAAACACAACCTGACAACTTCAGAACTACGACCTTCATAGAAAACACAACCTACAACCTGACAACTTCAAACTACGACCTTCATAGAAAAACACAACCAAC	GH de L.os	GAAGTGGGAGCATTTCCACTGTACAGCCTCTTCACCAATGCAGTGATAAGAGCACAGCAC
GH de catá GH de L.os CTCCACCAGCTTGCGGCTGATATTTACAAAGATTTTGAGCGCACCTATGTGCCAGAAGAG GH de L.os L H Q L A A D I Y K D F E R T Y V F B B CAGAGACAGTCAAGCAAAAGTTCTCCATCTGCCATATGTGCACTTCCTGCA CAGAGACAGTCAAGCAAAAGTTCTCCATCTGCCATATGTTTTTTTT		******** *********
CTCCACCAGCTTGCGGCTGATATTTACAAAGATTTTGAGCGCACCTACGTGCCAGAAGAG GH_de_L.os L H Q L A A D I Y K D F E R T Y V F E E CAGAGACAGTCAAGCAAAAGTTCTCCATCGCCATATGCTATTCTGACTCCATCCTGCA CAGAGACAGTCAAGCAAAAGTTCTCCATCGCCATATGCTATTCTGACTCCATCCTGCA CAGAGACAGTCAAGCAAAAGTTCTCCATCGCCCATATGCTATTCTGACTCCATCCTGCA GH_de_L.os GH_de_catá GH_de_L.os CCCACTGGCAAAGATGAGCTCAGCAGAGATCTGATGTGGAGCTGCTGAGATTCTCCCTG CCCACTGGCAAAGATGAGCTCAGCAGAGATCTGATGTGGAGCTGCTGAGATTCTCCCTG CCCACTGGCAAAGATGAGCTCAGCAGAGATCTGATGTGGAGCTGCTGAGATTCTCCCTG GH_de_L.os GT_GCTCTCATCCAGTCCTGGATCAGCCCTCTGCAGACTCTGAGCCGGGTGTTCTCCAACAGC GCTCTCATCCAGTCCTGGATCAGCCCTCTGCAGACTCTGAGCCGGGGTGTTCTCCAACAGC GCTCTCATCCAGTCCTGGATCAGCCCTCTGCAGACTCTGAGCCGGGGGATC CTAGTCTTTGGCCACTTCCGACAGGATCTTTGAGAAGCTGCAGGACCTTGAGCGGGGGATC CTAGTCTTTGGCCACTTCCGACAGGATCTTTTGAGAAGCTGCAGGCACCTTGAGCCAGGGATC CTAGTCTTTGGCCACTTCCGACAGGGATCTTTTGAGAAGCTGCAGGCACCTTGAGCCAGGGATC GH_de_L.os GH_de_catá GTGACCCTCACAAGGGAAATTGATGAGGGAAGCCCCAGAATTGCAGCCTTCCTGACTCTC GTGACCCTCACAAGGGAAATTGATGAGGGAAGCCCCAGAATTGCAGCCTTCCTGACTCTC GTGACCCTCACAAGGGAAATTGATGAGGAAGCCCCAGAATTGCAGCCTTCCTGACTCTC GTGACCCTCACAAGGGAAATTGATGAGGAAGCCCCAGAATTGCAGCCTTCCTGACTCTC GTGACCCTCACAAGGGAAATTGATGAGGAAGCCCCAGAATTGCAGCCTTCCTGACTCTC GTGACCCTCACAAGGGAAATTGATGAGGAAAGCCCCCAGAATTGCAGCCTTCCTACTCTC GTGACCCTCACAAGGGAAATTGATGAGCACCTGAGAACCACCAGACCTTCATCAAGGAACTTCCAGCCTTCCTACTCTC GTGACCCTTCACAAGGGAAATTGATCACCTAGAGAACCACCAGACCTTCATCAAGGAACTTCCAACCTGAGAACACCAGCCCTCTCATCACACGGG GH_de_L.os T Y E K F D T N L R N D D V-A L N K W Y G CTTTTAGCTTGTTTCAAGAAAAGACATCGACAAACTGGAAACTACGAGAACTTCCACAAACTGGAAACAACTGAGAACACTGAGAACTTCCACAAACTGGAACACTGAGAACCTTCAAACTGGAACACTTCAAACTGAGAACCACTTCCTTC		N Q H
L H Q L A A D I Y K D F E R T Y V P E B CAGAGACAGTCAAGCAAAAGTTCTCCATCTGCCATATGCTATTCTGAGTCCATTCCTGCA CAGAGACAGTCAAGCAAAAGTTCTCCATCTGCCATATGCTATTCTGAGTCCATTCCTGCA CAGAGACAGTCAAGCAAAAGTTCTCCATCTGCCATATGCTATTCTGAGTCCATTCCTGCA GH de catá GH de catá GH de L.os CCCACTGGCAAAGATGAAGCTCAGCAGAGATCTGATGTGGAGCTGCTGAGATTCTCCCTG CCCACTGGCAAAGACGAAGACTCAGCAGAGATCTGATGTGGAGCTGCTGAGATTCTCCCTG CCCACTGGCAAAGACGAAGCTCAGCAGAGATCTGATGTGGAGCTGCTGAGATTCTCCCTG GH de L.os F T G K D E A Q Q R S D V E L L R F S L GCTCTCATCCAGTCCTGGATCAGCCCTTCTGCAGACTCTTGAGCCGGGTTTCTCCAACAGC GCTCTCATCCAGTCCTGGATCAGCCCTTCTGCAGACTCTTGAGCCGGGGTTTCTCCAACAGC GCTCTCATCCAGTCCTGGATCAGCCCTTCTGCAGACTCTTGAGCAGGCATCTTTGGCACTCTCTGACTCTTCGGCACTTCTGGCCAGGAATTTGAGCAGAGCTTTTGAGAAGCTGCAGGATCTTTGAGCAGCGTTCTTGACTCTC GCTGCCCTCACAAGGGCAAATTGATGAGGGAAGCCCCAGAATTGCAGCCTTCCTGACTCTC GCTGCACCCTCACAAGGGAAATTGATGAGGGAAGCCCCAGAATTGCAGCCTTCCTGACTCTC GCTGACCCTCACAAGGGAAATTGATGAGGGAAGCCCCAGAATTGCAGCCTTCCTGACTCTC GTGACCCTCACAAGGGAAATTGATGAGGGAAGCCCCAGAATTGCAGCCTTCCTGACTCTC GCTGACCCTCACAAGGGAAATTGATGAGGGAAGCCCCAGAATTGCAGCCTTCCTGACTCTC GCTGACCCTCACAAGGGAAATTGATGAGGGAAGCCCCAGAATTGCAGCCTTCCTGACTCTC GCTGACCCTCACAAGGGAAATTGATGAGGGAAGCCCCAAGATTGCAGCCTTCCTGACTCTC GCTGACCCTCACAAGGGAAATTGATGAGGGAAGCCCCAAGATTGCAGCCTTCCTGACTCTC GCTGACCCTCACAAGGGAAATTGATGAGGGAAGCCCCAAGATTGCAGCCTTCCTGACTCTC GCTGACCCTCACAAGGGAAATTGATCAGCAAACTGCAGCCTTCCTGACTACTCTC GCTGACCCTCACAAGGGAAATTGATCAGCCAAACTGCAGCCTTCCTGACTAGAAAAAACACCCCAACCTGAGAAATGACAGCCCTCTCCTGACTACTCTC GCTCTTTTAGCTTTCTAAGAAAAGACACTCTAAACTAGCAGACCTTCTCTAAGAAAAGACATCACGGG ACGTATTCACCTTCTAAGAAAAGACATCCTCAAACTTGACACAAACTTGAGAACTT CTTTTACCTTTTTCAAGAAAAGACATGCACAAACTTGACAAACTTGAGAACTT CTTTTACCTTTTTCAAGAAAAAGACATGCACAAACTTGACAAACTTGAGAACTT CTTTTTACCTTTTCAAGAAAAGACATGCACAAACTTGACAAACTTGACAAAATTGACACAAACTTGACAAAATTGACACAAACTTGACAAAATTGACACAAACTTGACAAAATTGACACAAACTTGACAAAATTGACACAAACTTGACAAAATTGACACAAACTTGACAAAATTGACACAAACTTGACAAAATTGACACAAACTTGACAAAATTGACACAAACTTGACAAAATTGACACAAACTTGACAAAATTGACACAAACTTGACAAAATTGACACAAACTTGACAAAATTGACACAAACTTGACAAAATTGACACAAACTTGACAAAA	GH_de_catá	CTCCACCAGCTTGCGGCTGATATTTACAAAGATTTTGAGCGCACCTATGTGCCAGAAGAG
GH de catá GH de L.os CAGAGACAGTCAAGCAAAAGTTCTCCATCTGCCATATGCTATTCTGAGTCCATTCCTGCA CAGAGACAGTCAAGCAAAAGTTCTCCATCTGCCATATGCTATTCTGAGTCCATTCCTGCA CAGAGACAGTCAAGCAAAAGTTCTCCATCCGCCATATGCTATTCTGAGTCCATTCCTGCA CAGAGACAGTCAAGCAAAAGTTCTCCATCCGCCATATGCTATTCTGAGTCCATTCCTGCA GH de catá GH de L.os CCCACTGGCAAAGATGAAGCTCAGCAGAGATCTGATGTGAGAGTTCTCCCTG CCCACTGGCAAAGATGAAGCTCAGCAGAGATCTGATGTGGAGCTGCTGAGATTCTCCCTG GH de L.os GCTCTCATCCAGTCCTGGATCAGCCCTCTGCAGACTCTGAGCCGGGTGTTCTCCAACAGC GCTCTCATCCAGTCCTGGATCAGCCCTCTGCAGACTCTGAGCCGGGTGTTCTCCAACAGC GCTCTCATCCAGTCCTGGATCAGCCCTCTGCAGACTCTGAGCCGGGTGTTCTCCAACAGC GCTCTCATCCAGTCCTGGATCAGCCCTCTGCAGACTCTGAGCAGGGGATC A L I Q S W I S P L Q T L S R V P S N S GH de catá GTAGTCTTCGGCACTTCCGACAGGATCTTTGAGAAGCTGCAGGACCTTGAGCAGGGGATC CTAGTCTTTGGCACTTCCGACAGGATCTTTTGAGAAGCTGCAGGACCTTTGACCAGCGGGATC CTAGTCTTTGGCACTTCCACAAGGGAAATTGATGAGGAAGCTGCAGGACCTTCCTGACTCTC GTGACCCTCACAAGGGGAAATTGATGAGGAAGCCCCAGAATTGCAGCCTTCCTGACTCTC GTGACCCTCACAAGGGGAAATTGATGAGGAAGCCCCCAGAATTGCAGCCTTCCTGACTCTC GTGACCCTCACAAGGGGAAATTGATGAGGAAGCCCCCAGAATTGCAGCCTTCCTGACTCTC GTGACCCTCACAAGGGGAAATTGATGAGGAAGCCCCCAGAATTGCAGCCTTCCTGACTCTC GTGACCCTCACAAGGGGAAATTGATGAGGAAGCCCCCAGAATTGCAGCCTTCCTGACTCTC GTGACCCTCACAAGGGGAAATTGATGAGGAAGCCCCCAGAATTGCAGCCTTCCTGACTCTC GTGACCCTCACAAGGGGAAATTGATGAGGAAGCCCCCAGAATTGCAGCCTTCCTGACTCTC GTGACCCTCACAAGGGGAAATTGATGAGGAAGCCCCCAGAATTGCAGCCTTCCTGACTCTC GTGACCCTTCACAAGGGGAAATTGATGAAGAAGCACGCCCTCTGATGAAGAACTACGGG ACGTATGAGAAGTTTGACACCAACCTTGAGAAAACGACGACCTTCTCATGAAGAACTACCGGG ACGTATGAGAAGTTTGACACCAACCTTGAGAAACGACGACCTTCTGATGAAGAACTACCGGG ACGTATGACAAGTTTGACACCAACCTTGAGAAATGACGACGCCTCTGATGAAGAACTACCGGG ACGTATGACAAGTTTGACACCAACCTTGAGAAATGACGACGCCTCTGATGAAGAACTACCGGG ACGTATGACAAGTTTGACACAACCTTGAGAAATGACGACGACCTTCTGATGAAGAACTACCGGG ACGTATGACAAGTTTGAAGAAAGACACACCTTGAAATGAACGACGACCTTCTATGAAGAACTACCGGG ACGTATGACAAACTACACCTAAACTACACACCTTCAAAATGAACACACCTTCAAACTACCACCTTCAAACTACCACACCTTCAAAATGAACACACCTTCAAACTACGACACCTTCAAAACTACGACACCTTCAAACTACCACCTTCAAACTACCACACCTTCAAACTACCACACCTTCAAACTACACACCTTCAAACTACCACACC	GH de L.os	CTCCACCAGCTTGCGGCTGATATTTACAAAGATTTTGAGCGCACCTACGTGCCAGAAGAG
GH de catá GH de L.os CAGAGACAGTCAAGCAAAAGTTCTCCATCTGCCATATGCTATTCTGAGTCCATTCCTGCA CAGAGACAGTCAAGCAAAAGTTCTCCATCTGCCATATGCTATTCTGAGTCCATTCCTGCA CAGAGACAGTCAAGCAAAAGTTCTCCATCCGCCATATGCTATTCTGAGTCCATTCCTGCA CAGAGACAGTCAAGCAAAAGTTCTCCATCCGCCATATGCTATTCTGAGTCCATTCCTGCA GH de catá GH de L.os CCCACTGGCAAAGATGAAGCTCAGCAGAGATCTGATGTGGAGCTGCTGAGATTCTCCCTG CCCACTGGCAAAGATGAAGCTCAGCAGAGATCTGATGTGGAGCTGCTGAGATTCTCCCTG GH de L.os GCTCTCATCCAGTCCTGGATCAGCCCTCTGCAGACTCTGAGCCGGGTGTTCTCCAACAGC GCTCTCATCCAGTCCTGGATCAGCCCTCTGCAGACTCTGAGCCGGGTGTTCTCCAACAGC GCTCTCATCCAGTCCTGGATCAGCCCTCTGCAGACTCTGAGCAGGGGGTTCTCCCAACAGC GCTCTCATCCAGTCCTGGATCAGCCCTCTGCAGAACTCTGAGCAGGGGGATC GH de L.os CTAGTCTTCGGCACTTCCGACAGGATCTTTGAGAAGCTGCAGGACCTTGAGCAGGGGATC L V F G T S D R I F E K L Q D L E R G I GTGACCCTCACAAGGGGAAATTGATGAGGAAAGCCCCAGAATTGCAGCCTTCCTGACTCTC GTGACCCTCACAAGGGGAAATTGATGAGGGAAAGCCCCAGAATTGCAGCCTTCCTGACTCTC GTGACCCTCACAAGGGGAAATTGATGAGGGAAAGCCCCAGAATTGCAGCCTTCCTGACTCTC GTGACCCTCACAAGGGGAAATTGATGAGGAAAGCCCCAGGATTCCAGACCTTCCTGACTCTC GTGACCCTCACAAGGGGAAATTGATGAGGAAAGCCCCCAGAATTGCAGCCTTCCTGACTCTC GTGACCCTCACAAGGGGAAATTGATGAGGAAACGACCACCTTCATGAGAAACTACCGGG ACGTATGAGAAAGTTTGACACCAACCTTGAGAAATGCACACCTTCATGAGAAACTACCGGG ACGTATGAGAAAGTTTGACACCAACCTTGAGAAAAGGCACGCCTCTGATGAAGAACTACCGGG ACGTATGAGAAAGTTTGACACCAACCTTGAGAAAAGGCACGCCTCTGATGAAGAACTACCGGG ACGTATGAGAAAGTTTGACACCAACCTTGAGAAAACGACCGCCTCTGATGAAGAACTACCGGG ACGTATGAGAAAGTTTGACACCAACCTTGAGAAAATGCACCACCTTCATGAGAAACTACCGGG ACGTATGAGCAAGTTTGACACCAACCTTGAGAAAACGACCGCCTCTGATGAAGAACTACCGGG ACGTATGAGCAAGTTTGACACCAACCTTGAGAAACGACCGCCTCTGATGAAGAACTACCGGG ACGTATGACAAGTTTGACACCAACCTTGAGAAAACGACCGCCTCTGATGAAGAACTACCGGG ACGTATGACTTGTTTCAAGAAAAGACAACCTCGACAAACTACGGGAACCTT T Y E K P D T N L R N D D V-A L N K N Y G CTTTTAGCTTGTTTCAAGAAAAGACAACCACCACACCA		********************
CAGAGACAGTCAAGCAAAAGTTCTCCATCCGCCATATGCTATTCTGAGTCCATTCCTGCA CAGAGACAGTCAAGCAAAAGTTCTCCATCCGCCATATGCTATTCTGAGTCCATTCCTGCA GH de catá GH de L.os CCCACTGGCAAAGAGTGAAGCTCAGCAGAGATCTGATGTGGAGATCTCCCTG GH de L.os GT GE CACÁ GCCACTGGCAAAGACGAAGCTCAGCAGAGATCTGAGTGTGGAGATCTCCCTG GCCACTGGCAAAGACGAAGACTCAGCAGAGATCTGAGTGTGAGAGCTGCAGAATCTCCCTG GCCACTGGCAAAGACGAAGACTCAGCAGAGACTCTGAGCGGGGTGTTCTCCAACAGC GCTCTCATCCAGTCCTGGATCAGCCCTCTGCAGACTCTGAGCCGGGTGTTCTCCAACAGC GCTCTCATCCAGTCCTGGATCAGCCCTCTGCAGACTCTCAGCCGGGTGTTCTCCAACAGC GCTCTCATCCAGTCCTGGATCAGCCCTCTGCAGACTCTCAGCCGGGGGTTCTCCAACAGC GCTCTCATCCAGTCCTGGATCAGCCCTCTGAGAAGCTGCAGGACCTTGAGCGAGGGTTCTCCGACAGGCATCTTTGAGAAGCTGCAGGACCTTGAGCGAGGGATC L V F G T S D R I F E K L Q D L E R G I GH de catá GTGACCCTCACAAGGGAAATTGATGAGGGAAGCCCCAGAATTGAGCACCTTCCTGACTCTC GTGACCCTCACAAGGGAAATTGATGAGGGAAGCCCCCAGAATTGAGCAGCCTTCCTGACTCTC GTGACCCTCACAAGGGAAATTGATGAGGGAAGCCCCCAGAATTGAAGAACTACCGGG GH de L.os GH de catá GTGACCCTCACAAGGGAAATTGATGAGGGAAATTGACGACCTTCCTGACTCTC GTGACCCTCACAAGGGAAATTGATGAGGGAAACCCCCCAGAATTGAAGAACTACCGGG ACGTATGAGAAAGTTTGACACCAACCTCAGAAATGACGACGACCCTCTGATGAAGAACTACCGGG ACGTATGAGAAAGTTTGACACCAACCTCGAGAAATGACGACGACCCTCTGATGAAGAACTACCGGG GH de L.os GH de catá GH de catá GH de Catá GTTTTTAGCTTGTTTCAAGAAAAGACATGCCCAAAATTGCAGCACCTTCTTCTTCTTCTTCAAGAAAAAGACATGCCCAAAATGGACACCTTCTTCTTCTTCTTCAAGAAAAGACATGCCCAAAATGGACACCTTCTTCTTCTTCTTCAAGAAAAAACTACGCACAACCTCTGAGAAATGCACCACCTTCTTCTTCTTCTTCAAGAAAAAACTACCGACACCTTCTAAAGTGGAACCTT T Y E K F D T N L R N D D V-A L N K B Y G CTTTTTAGCTTGTTTCAAGAAAAGACATGCCCACAAATTGCACCACCTT CTTTTAGCTTGTTTCAAGAAAAGACATGCCACAAATTGCACCACCTTCTTCTTCTTCTTCTTCTTCTTCAAGAAAAAGACATGCCACAAATTGCACCATCTTCTTCTTTCAAGAAAAAATGCACACAACCTTCAAAGTGGAACCTT CTTTTAGCTTGTTTCAAGAAAAAAAACACATGCACAAAATGCACAACCTTCTTCTTTCAAGAAAAAATGCACACAACCTCAAAATGCACAAACTTCCACAACTTCTTCTTTCAAGAAAAAAACACATGCACAAACTACCACACCTTCTTCTTTCAAGAAAAAATGCACACAAACTACCACACCTTCTAAAGTGCACAACTTCTTCTTCTTCAAGAAAAAAATGCACACAAACTACCACAACCTTCTAAAATGCACACAACTTCTAAAATGCACACAACTTCTAAAATGCACACAACTTCTAAAATGCACACAACTTCTAAAATGCACACA		LHQLAADIYKDFERTYVPEE
QRQSSKSSPSAICYSECTCAGAGAGTCTCAGCAGAGTCTCCTGAGCTGCAGATTCTCCCTGCTGCAAAGAGAGAG	GH_de_catá	CAGAGACAGTCAAGCAAAAGTTCTCCATCTGCCATATGCTATTCTGAGTCCATTCCTGCA
GH de catá GH_de L.os CCCACTGGCAAAGATGAAGCTCAGCAGAGATCTGATGTGGAGCTGCTGAGATTCTCCCTG CCCACTGGCAAAGACGAAGCTCAGCAGAGATCTGATGTGGAGCTGCTGAGATTCTCCCTG CCCACTGGCAAAGACGAAGCTCAGCAGAGATCTGATGTGGAGCTGCTGAGATTCTCCCTG CCCACTGGCAAAGACGAAGCTCAGCAGCAGCTCTGAGCAGGATCTCCCAACAGC GH_de Catá GCTCTCATCCAGTCCTGGATCAGCCCCTCTGCAGACTCTGAGCCGGGTTTCTCCAACAGC GCTCTCATCCAGTCCTGGATCAGCCCCTCTGCAGACTCTGAGCCGGGTTTCTCCAACAGC GCTCTCATCCAGTCCTGGACAGGATCTTTGAGAAGCTGCAGGACCTTGAGCGGGGGGATC GH_de Catá GCTAGTCTTCGGCACTTCCGACAGGATCTTTGAGAAGCTGCAGGACCTTGAGCGGGGGGATC CTAGTCTTTGGCACTTCCGACAGGATCTTTGAGAAGCTGCAGGACCTTGAGCGGGGGGATC CTAGTCTTTGGCACTTCCGACAGGGAATTGAGAGAGCCCCAGAATTGAGCGCAGCGTTCTCTGACCTCTC GH_de Catá GH_de Catá GTGACCCTCACAAGGGAAATTGATGAGGGGAAGCCCCCAGAATTGCAGCCTTCCTGACCTCC GTGACCCTCACAAGGGGAAATTGATGAGGGGAAGCCCCCAGAATTGCAGCCTTCCTGACTCTC GTGACCCTCACAAGGGGAAATTGATGAGGGGAAGCCCCCAGAATTGCAGCCTTCCTGACTCTC GTGACCCTCACAAGGGGAAATTGATGAGGGAAGCCCCCAGAATTGCAGCCTTCCTGACTCTC GTGACCCTCACAAGGGGAAATTGATGAGGGAAGCCCCCAGAATTGCAGCCTTCCTGACTCTC GTGACCCTCACAAGGGGAAATTGATGAGGGAAGCCCCCAGAATTGCAGCCTTCCTGACTCTC GTGACCCTCACAAGGGGAAATTGATGAGGGAAGCCCCCAGAATTGCAGCCCTTCCTGACTCTC GTGACCCTCACAAGGGGAAATTGATGAGGGAAGCCCCCAGAATTGCAGCCCTTCCTGACCTCTC GTGACCCTCACAAGGGGAAATTGATGAGGAAGCCCCCAGAATTGCAGCCCTTCCTGACCTCTC GTGACCCTCACAAGGGGAAATTGATGAGGAAGCCCCCAGAATTGCAGCCCTTCCTGACCACCTC GTGACCCTCACAAGGGGAAATTGATGAGGAAGCCCCCAGAATTGCAGCCCTTCCTGACCACCTTCCTGACCACCTTCCTGACCACCTTCCTGACCACCTTCCTGACCACCTTCCTGACCAACCTTCCTGACCAACCTTCCTGACAAACGACCCTTCCTGATGAAGAACTACCGGG ACGTATGAGAAGTTTGACCACACCTGAGAAATGACCACCCTTCCTGATGAAGAACTACCGGG ACGTATGAGAAGTTTGACCACACCTGAGAAAAGACCACCTTCAAACGACCCTTCCTGATGAAGAACTACCGGG ACGTATGAGAAGAAGTTTGACCAAACTGACCAAACGACCCTTCAAACGAACTACCTTCAAAAGAACTACGGG ACGTATGAGCAAAGAAGACATCCACAAACGACCACCTTCAAAAGAACAACTTCAACAAAAGAAAG	GH_de_L.os	CAGAGACAGTCAAGCAAAAGTTCTCCATCCGCCATATGCTATTCTGAGTCCATTCCTGCA
GH de catá GH_de L.os CCCACTGGCAAAGATGAAGCTCAGCAGAGATCTGATGTGGAGCTGCTGAGATTCTCCCTG CCCACTGGCAAAGACGAAGCTCAGCAGAGATCTGATGTGGAGCTGCTGAGATTCTCCCTG CCCACTGGCAAAGACGAAGCTCAGCAGAGATCTGATGTGGAGCTGCTGAGATTCTCCCTG CCCACTGGCAAAGACGAAGCTCAGCAGCAGCTCTGAGCAGGATCTCCCAACAGC GH_de Catá GCTCTCATCCAGTCCTGGATCAGCCCCTCTGCAGACTCTGAGCCGGGTTTCTCCAACAGC GCTCTCATCCAGTCCTGGATCAGCCCCTCTGCAGACTCTGAGCCGGGTTTCTCCAACAGC GCTCTCATCCAGTCCTGGACAGGATCTTTGAGAAGCTGCAGGACCTTGAGCGGGGGGATC GH_de Catá GCTAGTCTTCGGCACTTCCGACAGGATCTTTGAGAAGCTGCAGGACCTTGAGCGGGGGGATC CTAGTCTTTGGCACTTCCGACAGGATCTTTGAGAAGCTGCAGGACCTTGAGCGGGGGGATC CTAGTCTTTGGCACTTCCGACAGGGAATTGAGAGAGCCCCAGAATTGAGCGCAGCGTTCTCTGACCTCTC GH_de Catá GH_de Catá GTGACCCTCACAAGGGAAATTGATGAGGGGAAGCCCCCAGAATTGCAGCCTTCCTGACCTCC GTGACCCTCACAAGGGGAAATTGATGAGGGGAAGCCCCCAGAATTGCAGCCTTCCTGACTCTC GTGACCCTCACAAGGGGAAATTGATGAGGGGAAGCCCCCAGAATTGCAGCCTTCCTGACTCTC GTGACCCTCACAAGGGGAAATTGATGAGGGAAGCCCCCAGAATTGCAGCCTTCCTGACTCTC GTGACCCTCACAAGGGGAAATTGATGAGGGAAGCCCCCAGAATTGCAGCCTTCCTGACTCTC GTGACCCTCACAAGGGGAAATTGATGAGGGAAGCCCCCAGAATTGCAGCCTTCCTGACTCTC GTGACCCTCACAAGGGGAAATTGATGAGGGAAGCCCCCAGAATTGCAGCCCTTCCTGACTCTC GTGACCCTCACAAGGGGAAATTGATGAGGGAAGCCCCCAGAATTGCAGCCCTTCCTGACCTCTC GTGACCCTCACAAGGGGAAATTGATGAGGAAGCCCCCAGAATTGCAGCCCTTCCTGACCTCTC GTGACCCTCACAAGGGGAAATTGATGAGGAAGCCCCCAGAATTGCAGCCCTTCCTGACCACCTC GTGACCCTCACAAGGGGAAATTGATGAGGAAGCCCCCAGAATTGCAGCCCTTCCTGACCACCTTCCTGACCACCTTCCTGACCACCTTCCTGACCACCTTCCTGACCACCTTCCTGACCAACCTTCCTGACCAACCTTCCTGACAAACGACCCTTCCTGATGAAGAACTACCGGG ACGTATGAGAAGTTTGACCACACCTGAGAAATGACCACCCTTCCTGATGAAGAACTACCGGG ACGTATGAGAAGTTTGACCACACCTGAGAAAAGACCACCTTCAAACGACCCTTCCTGATGAAGAACTACCGGG ACGTATGAGAAGAAGTTTGACCAAACTGACCAAACGACCCTTCAAACGAACTACCTTCAAAAGAACTACGGG ACGTATGAGCAAAGAAGACATCCACAAACGACCACCTTCAAAAGAACAACTTCAACAAAAGAAAG		*****************
GH_de_L.os CCCACTGGCAAAGACGAAGCTCAGCAGAGATCTGATGTGAGCTGCTGAGATTCTCCCTG P T G K D E A Q Q R S D V E L L R F S L GCTCTCATCCAGTCCTGGATCAGCCCTCTGCAGACTCTGAGCCGGGTGTTCTCCAACAGC GCTCTCATCCAGTCCTGGATCAGCCCTCTGCAGACTCTGAGCCGGGTGTTCTCCAACAGC GCTCTCATCCAGTCCTGGATCAGCCCTCTGCAGACTCTGAGCCGGGTGTTCTCCAACAGC GCTCTCATCCAGTCCTGGACCAGGACTCTTGAGCAGCCCTGAGCCGGGGGATC GH de catá CTAGTCTTCGGCCATCCGACAGGATCTTTGAGAAGCTGCAGGACCTTGAGCGGGGGATC GH de L.os CTAGTCTTCGGCACTTCCGACAGGATCTTTGAGAAGCTGCAGGACCTTGAGCGAGGGATC L V F G T S D R I F E K L Q D L E R G I GTGACCCTCACAAGGGAAATTGATGAGGGAAGCCCCAGAATTGCAGCCTTCCTGACTCTC GTGACCCTCACAAGGGAAATTGATGAGGGAAGCCCCAGAATTGCAGCCTTCCTGACTCTC GH de catá CTTTTAGCTTGTTTCAAGAAAGCACTGAAAATGACGACGTCTTGATGAAGAACTACCGGG GH de L.os CTTTTAGCTTGTTTCAAGAAAGACATGCACAAAGTGGAGACTT CTTTTAGCTTGTTTCAAGAAAGACATGCACAAAGTGGAGACTT **********************************		QRQSSKSSPSAICYSESIPA
P T G K D E A Q Q R S D V E L L R F S L GH de catá GCTCTCATCCAGTCCTGGATCAGCCCTCTGCAGACTCTGAGCCGGGTGTTCTCCAACAGC GCTCTCATCCAGTCCTGGATCAGCCCTCTGCAGACTCTGAGCCGGGTGTTCTCCAACAGC GCTCTCATCCAGTCCTGGATCAGCCCTCTGCAGACTCTGAGCCGGGTGTTCTCCAACAGC A L I Q S W I S P L Q T L S R V F S N S GH de catá CTAGTCTTCGGCACTTCCGACAGGATCTTTGAGAAGCTGCAGGACCTTGAGCGGGGATC GH de L.os CTAGTCTTTGGCACTTCCGACAGGATCTTTGAGAAGCTGCAGGACCTTGAGCGGGGATC L V F G T S D R I F E K L Q D L E R G I GH de catá GTGACCCTCACAAGGGAAATTGATGAGGGAAGCCCCAGAATTGCAGCCTTCCTGACTCTC GH de L.os GTGACCCTCACAAGGGAAATTGATGAGGGAAGCCCCAGAATTGCAGCCTTCCTGACTCTC GH de Catá GH de Catá GH de Catá GH de Catá ACGTATGAGAAGTTTGACACCAACCTGAGAAATGACGACGTCTTGATGAGAACTACGGG ACGTATGAGAAGTTTGACACCAACCTGAGAAATGACGACGTCTTGATGAAGAACTACGGG GH de Catá GH de Catá GH de Catá CTTTTAGCTTGTTTCAAGAAAAGACATGCTCAAAGTGGAGACTT T Y E K F D T N L R N D D V-A L N K N Y G CTTTTAGCTTGTTTCAAGAAAAGACATGCTCAAAGTGGAGACTT CTTTTAGCTTGTTTCAAGAAAAGACATGCTCAAAGTGGAGACTT		CCCACTGGCAAAGATGAAGCTCAGCAGAGATCTGATGTGGAGCTGCTGAGATTCTCCCTG
GH de catá GCTCTCATCCAGTCCTGGATCAGCCCTCTGCAGACTCTGAGCCGGGTGTTCTCCAACAGC GH de L.os GCTCTCATCCAGTCCTGGATCAGCCCTCTGCAGACTCTGAGCCGGGTGTTCTCCAACAGC A L I Q S W I S P L Q T L S R V P S N S GH de catá CTAGTCTTCGGCACTTCCGACAGGATCTTTGAGAAGCTGCAGGACCTTGAGCGGGGGATC GH de L.os CTAGTCTTTGGCACTTCCGACAGGATCTTTGAGAAGCTGCAGGACCTTGAGCGAGGGATC L V F G T S D R I F B K L Q D L B R G I GH de catá GTGACCCTCACAAGGGAAATTGATGAGGGAAGCCCCAGAATTGCAGCCTTCCTGACTCTC GTGACCCTCACAAGGGAAATTGATGAGGGAAGCCCCAGAATTGCAGCCTTCCTGACTCTC V T L T R B I D B G S P R I A A F L T L ACGTATGAGAAAGTTTGACACCAACCTGAGAAATGACGACGTTCTGATGAAGAACTACGGG ACGTATGAGAAAGTTTGACACCAACCTGAGAAATGACGACGTTCTGATGAAGAACTACGGG GH de L.os T Y B K P D T N L R N D D V-A L N K N Y G GH de catá GH de L.os CTTTTAGCTTGTTTCAAGAAAGACATGCACAAAGTGGAGACTT CTTTTAGCTTTGTTTCAAGAAAGACATGCACAAAGTGGAGACTT CTTTTAGCTTTGTTTCAAGAAAGACATGCACAAAGTGGAGACTT CTTTTAGCTTTGTTTCAAGAAAGACATGCACAAAGTGGAGACTT CTTTTAGCTTTGTTTCAAGAAAGACATGCACAAAGTGGAGACTT CTTTTAGCTTTGTTTCAAGAAAGACATGCACAAAGTGGAGACTT CTTTTAGCTTTGTTTCAAGAAAGACATGCACAAAGTGGAGACTT CTTTTAGCTTTGTTTCAAGAAAGACATGCACAAAGTGGAGACTT CTTTTAGCTTTGTTTCAAGAAAGACATGCACAAAGTGGAGACTT	GH_de_L.os	CCCACTGGCAAAGACGAAGCTCAGCAGAGATCTGATGTGGAGCTGCTGAGATTCTCCCTG
GH de catá GCTCTCATCCAGTCCTGGATCAGCCCTCTGCAGACTCTGAGCCGGGTGTTCTCCAACAGC GH de L.os GCTCTCATCCAGTCCTGGATCAGCCCTCTGCAGACTCTGAGCCGGGTGTTCTCCAACAGC A L I Q S W I S P L Q T L S R V P S N S GH de catá CTAGTCTTCGGCACTTCCGACAGGATCTTTGAGAAGCTGCAGGACCTTGAGCGGGGGATC GH de L.os CTAGTCTTTGGCACTTCCGACAGGATCTTTGAGAAGCTGCAGGACCTTGAGCGAGGGATC L V F G T S D R I F B K L Q D L B R G I GH de catá GTGACCCTCACAAGGGAAATTGATGAGGGAAGCCCCAGAATTGCAGCCTTCCTGACTCTC GTGACCCTCACAAGGGAAATTGATGAGGGAAGCCCCAGAATTGCAGCCTTCCTGACTCTC V T L T R B I D B G S P R I A A F L T L ACGTATGAGAAAGTTTGACACCAACCTGAGAAATGACGACGTTCTGATGAAGAACTACGGG ACGTATGAGAAAGTTTGACACCAACCTGAGAAATGACGACGTTCTGATGAAGAACTACGGG GH de L.os T Y B K P D T N L R N D D V-A L N K N Y G GH de catá GH de L.os CTTTTAGCTTGTTTCAAGAAAGACATGCACAAAGTGGAGACTT CTTTTAGCTTTGTTTCAAGAAAGACATGCACAAAGTGGAGACTT CTTTTAGCTTTGTTTCAAGAAAGACATGCACAAAGTGGAGACTT CTTTTAGCTTTGTTTCAAGAAAGACATGCACAAAGTGGAGACTT CTTTTAGCTTTGTTTCAAGAAAGACATGCACAAAGTGGAGACTT CTTTTAGCTTTGTTTCAAGAAAGACATGCACAAAGTGGAGACTT CTTTTAGCTTTGTTTCAAGAAAGACATGCACAAAGTGGAGACTT CTTTTAGCTTTGTTTCAAGAAAGACATGCACAAAGTGGAGACTT CTTTTAGCTTTGTTTCAAGAAAGACATGCACAAAGTGGAGACTT		***********
GH_de_L.os GCTCTCATCCAGTCCTGGATCAGCCCTCTGCAGACTCTGAGCCGGGTGTTCTCCAACAGC A L I Q S W I S P L Q T L S R V P S N S GH_de_catá CTAGTCTTCGGCACTTCCGACAGGATCTTTGAGAAGCTGCAGGACCTTGAGCGGGGGATC CTAGTCTTTGGCACTTCCGACAGGATCTTTGAGAAGCTGCAGGACCTTGAGCGAGGGATC CTAGTCTTTGGCACTTCCGACAGGGATCTTTGAGAAGCTGCAGGACCTTGAGCGAGGGATC CTAGTCTTTGGCACTTCCGACAGGGAAGCCCCAGAATTGCAGCCTTCCTGACTCTC GH_de_catá GTGACCCTCACAAGGGAAATTGATGAGGGAAGCCCCAGAATTGCAGCCTTCCTGACTCTC GTGACCCTCACAAGGGAAATTGATGAGGGAAGCCCCAGAATTGCAGCCTTCCTGACTCTC GH_de_L.os CTTTTAGAGAAGTTTGACACCAACCTGAGAAACGACGACGTTCTGATGAAGAACTACGGG ACGTATGAGAAGTTTGACACCAACCTGAGAAACGACGACGTCTGATGAAGAACTACGGG ACGTATGAGAAGTTTGACACCAACCTGAGAAACGACGACGTCTGATGAAGAACTACGGG GH_de_L.os CTTTTAGCTTGTTTCAAGAAAGACATGCTCAAAGTGGAGACTT CTTTTAGCTTGTTTCAAGAAAGACATGCTCAAAGTGGAGACTT CTTTTAGCTTGTTTCAAGAAAGACATGCACAAAGTGGAGACTT CTTTTAGCTTGTTTCAAGAAAGACATGCACAAAGTGGAGACTT	model to the	
A L I Q S W I S P L Q T L S R V P S W S GH de catá CTAGTCTTCGGCACTTCCGACAGGATCTTTGAGAAGCTGCAGGACCTTGAGCGGGGGATC GH de L.os CTAGTCTTTGGCACTTCCGACAGGATCTTTGAGAAGCTGCAGGACCTTGAGCGAGGATC CTAGTCTTTGGCACTTCCGACAGGATCTTTGAGAAGCTGCAGGACCTTGAGCGAGGGATC L V F G T S D R I F B K L Q D L B R G I GTGACCCTCACAAGGGAAATTGATGAGGGAAGCCCCAGAATTGCAGCCTTCCTGACTCTC GTGACCCTCACAAGGGAAATTGATGAGGGAAGCCCCAGAATTGCAGCCTTCCTGACTCTC GTGACCCTCACAAGGGAAATTGATGAGGGAAGCCCCAGAATTGCAGCCTTCCTGACTCTC V T L T R B I D B G S P R I A A F L T L ACGTATGAGAAAGTTTGACACCAACCTGAGAAATGACGACGTTCTCATGAAGAACTACGGG GH de L.os GH de catá GH de catá CTTTTAGCTTGTTTCAAGAAAAGACTCCAAAGTGGAGACTT GH de L.os CTTTTAGCTTGTTTCAAGAAAAGACATGCTCAAAGTGGAGACTT CTTTTAGCTTGTTTCAAGAAAAGACATGCACAAAGTGGAGACTT **********************************	The state of the s	
GH de Catá CTAGTCTTCGGCACTTCCGACAGGATCTTTGAGAAGCTGCAGGACCTTGAGCGGGGGATC GH de L.os CTAGTCTTTGGCACTTCCGACAGGATCTTTGAGAAGCTGCAGGACCTTGAGCGAGGGATC L V F G T S D R I F E K L Q D L E R G I GH de Catá GTGACCCTCACAAGGGAAATTGATGAGGGAAGCCCCAGAATTGCAGCCTTCCTGACTCTC GH de L.os GTGACCCTCACAAGGGAAATTGATGAGGGAAGCCCCAGAATTGCAGCCTTCCTGACTCTC V T L T R E I D E G S P R I A A F L T L ACGTATGAGAAGTTTGACACCAACCTGAGAAATGACGACGTTCTGATGAAGAACTACGGG GH de L.os ACGTATGAGAAGTTTGACACCAACCTGAGAAACGACGACGTTCTGATGAAGAACTACGGG GH de Catá T Y E K F D T N L R N D D V-A L N K N Y G GH de Catá CTTTTAGCTTGTTTCAAGAAAGACATGCTCAAAGTGGAGACTT CTTTTAGCTTGTTTCAAGAAAGACATGCTCAAAGTGGAGACTT	GH_de_L.os	GCTCTCATCCAGTCCTGGATCAGCCCTCTGCAGACTCTGAGCCGGGTGTTCTCCAACAGC
GH de Catá CTAGTCTTCGGCACTTCCGACAGGATCTTTGAGAAGCTGCAGGACCTTGAGCGGGGGATC GH de L.os CTAGTCTTTGGCACTTCCGACAGGATCTTTGAGAAGCTGCAGGACCTTGAGCGAGGGATC L V F G T S D R I F E K L Q D L E R G I GH de Catá GTGACCCTCACAAGGGAAATTGATGAGGGAAGCCCCAGAATTGCAGCCTTCCTGACTCTC GH de L.os GTGACCCTCACAAGGGAAATTGATGAGGGAAGCCCCAGAATTGCAGCCTTCCTGACTCTC V T L T R E I D E G S P R I A A F L T L ACGTATGAGAAGTTTGACACCAACCTGAGAAATGACGACGTTCTGATGAAGAACTACGGG GH de L.os ACGTATGAGAAGTTTGACACCAACCTGAGAAACGACGACGTTCTGATGAAGAACTACGGG GH de Catá T Y E K F D T N L R N D D V-A L N K N Y G GH de Catá CTTTTAGCTTGTTTCAAGAAAGACATGCTCAAAGTGGAGACTT CTTTTAGCTTGTTTCAAGAAAGACATGCTCAAAGTGGAGACTT	TON	
GH de L.os CTAGTCTTTGGCACTTCCGACAGGATCTTTGAGAAGCTGCAGGACCTTGAGCGAGGGATC L V F G T S D R I F E K L Q D L E R G I GH de catá GH de L.os GTGACCCTCACAAGGGAAATTGATGAGGGAAGCCCCAGAATTGCAGCCTTCCTGACTCTC GH de L.os GTGACCCTCACAAGGGAAATTGATGAGGGAAGCCCCAGAATTGCAGCCTTCCTGACTCTC GH de catá GH de catá ACGTATGAGAAGTTTGACACCAACCTGAGAAATGACGACGTTCTGATGAAGAACTACGGG GH de L.os ACGTATGAGAAGTTTGACACCAACCTGAGAAACGACGACGTTCTGATGAAGAACTACGGG GH de catá GH de catá CTTTTAGCTTGTTCAAGAAAGACATGCTCAAAGTGGAGACTT CTTTTAGCTTGTTTCAAGAAAGACATGCCCACAAAGTGGAGACTT CTTTTAGCTTGTTTCAAGAAAGACATGCACAAAGTGGAGACTT		
L V F G T S D R I F B K L Q D L B R G I GH de catá GTGACCCTCACAAGGGAAATTGATGAGGGAAGCCCCAGAATTGCAGCCTTCCTGACTCTC GH de L.os GTGACCCTCACAAGGGAAATTGATGAGGGAAGCCCCAGAATTGCAGCCTTCCTGACTCTC V T L T R B I D B G S P R I A A F L T L GH de catá ACGTATGAGAAGTTTGACACCAACCTGAGAAATGACGACGTTCTGATGAAGAACTACGGG GH de L.os ACGTATGAGAAGTTTGACACCAACCTGAGAAACGACGACGCTCTGATGAAGAACTACGGG T Y B K F D T N L R N D D V-A L N K N Y G GH de catá CTTTTAGCTTGTTTCAAGAAAGACATGCTCAAAGTGGAGACTT CTTTTAGCTTGTTTCAAGAAAGACATGCCACAAAGTGGAGACTT		WWW. In I Alaka and a second of the second o
GH de catá GTGACCCTCACAAGGGAAATTGATGAGGGAAGCCCCAGAATTGCAGCCTTCCTGACTCTC GH de L.os GTGACCCTCACAAGGGAAATTGATGAGGGAAGCCCCAGAATTGCAGCCTTCCTGACTCTC V T L T R B I D B G S P R I A A F L T L GH de catá ACGTATGAGAAGTTTGACACCAACCTGAGAAATGACGACGTTCTGATGAAGAACTACGGG GH de L.os ACGTATGAGAAAGTTTGACACCAACCTGAGAAACGACGACGCTCTGATGAAGAACTACGGG T Y B K F D T N L R N D D V-A L N K N Y G GH de catá CTTTTAGCTTGTTTCAAGAAAGACATGCTCAAAGTGGAGACTT CTTTTAGCTTGTTTCAAGAAAGACATGCCACAAAGTGGAGACTT	GH_de_L.os VERIT	TAGTCTTTGGCACTTCCGACAGGATCTTTGAGAAGCTGCAGGACCTTGAGCGAGGGATC
GH de catá GTGACCCTCACAAGGGAAATTGATGAGGGAAGCCCCAGAATTGCAGCCTTCCTGACTCTC GH de L.os GTGACCCTCACAAGGGAAATTGATGAGGGAAGCCCCAGAATTGCAGCCTTCCTGACTCTC V T L T R B I D B G S P R I A A F L T L GH de catá ACGTATGAGAAGTTTGACACCAACCTGAGAAATGACGACGTTCTGATGAAGAACTACGGG GH de L.os ACGTATGAGAAAGTTTGACACCAACCTGAGAAACGACGACGCTCTGATGAAGAACTACGGG T Y B K F D T N L R N D D V-A L N K N Y G GH de catá CTTTTAGCTTGTTTCAAGAAAGACATGCTCAAAGTGGAGACTT CTTTTAGCTTGTTTCAAGAAAGACATGCCACAAAGTGGAGACTT		
GH_de_L.os GTGACCCTCACAAGGGAAATTGATGAGGGAAGCCCCAGAATTGCAGCCTTCCTGACTCTC ********************************		보는 / 그리는 [[[[[[[[]]] 등이 문자, 사람, 사람, 사람, 사람, 사람, 사람, 사람, 사람, 사람, 사람
V T L T R B I D B G S P R I A A P L T L GH de catá GH de L.os ACGTATGAGAAGTTTGACACCAACCTGAGAAATGACGACGTTCTGATGAAGAACTACGGG ACGTATGAGAAGTTTGACACCAACCTGAGAAACGACGACGCTCTGATGAAGAACTACGGG ACGTATGAGAAGTTTGACACCAACCTGAGAAACGACGACGCTCTGATGAAGAACTACGGG T Y B K P D T N L R N D D V-A L N K N Y G GH de catá GH de L.os CTTTTAGCTTGTTTCAAGAAAGACATGCTCAAAGTGGAGACTT CTTTTAGCTTGTTTCAAGAAAGACATGCACAAAGTGGAGACTT		
GH de Catá ACGTATGAGAAGTTTGACACCAACCTGAGAAATGACGACGTTCTGATGAAGAACTACGGG ACGTATGAGAAGTTTGACACCAACCTGAGAAACGACGACGTTCTGATGAAGAACTACGGG ACGTATGAGAAGTTTGACACCAACCTGAGAAACGACGCCTCTGATGAAGAACTACGGG ACGTATGAGAAGTTTGACACCAACCTGAGAAACGACGCCTCTGATGAAGAACTACGGG ACGTATGAGAAGTTTGACACCAACCTGAGAAACGACGCCTCTGATGAAGAACTACGGG T Y E K P D T N L R N D D V-A L N K N Y G GH de Catá CTTTTAGCTTGTTTCAAGAAAGACATGCCACAAAGTGGAGACTT **********************************	CH_GE_T.02	GTGACCCTCACAAGGGAAATTGATGAGGGAAGCCCCAGAATTGCAGCCTTCCTGACTCTC
GH de Catá ACGTATGAGAAGTTTGACACCAACCTGAGAAATGACGACGTTCTGATGAAGAACTACGGG ACGTATGAGAAGTTTGACACCAACCTGAGAAACGACGACGTTCTGATGAAGAACTACGGG ACGTATGAGAAGTTTGACACCAACCTGAGAAACGACGCCTCTGATGAAGAACTACGGG ACGTATGAGAAGTTTGACACCAACCTGAGAAACGACGCCTCTGATGAAGAACTACGGG ACGTATGAGAAGTTTGACACCAACCTGAGAAACGACGCCTCTGATGAAGAACTACGGG T Y E K P D T N L R N D D V-A L N K N Y G GH de Catá CTTTTAGCTTGTTTCAAGAAAGACATGCCACAAAGTGGAGACTT **********************************		
GH_de_L.os ACGTATGAGAAGTTTGACACCAACCTGAGAAACGACGACGCTCTGATGAAGAACTACGGG T Y E K P D T N L R N D D V-A L N K N Y G GH_de_catá CTTTTAGCTTGTTTCAAGAAAGACATGCTCAAAGTGGAGACTT GH_de_L.os CTTTTAGCTTGTTTCAAGAAAGACATGCACAAAGTGGAGACTT	G	
T Y E K P D T N L R N D D V-A L N K N Y G GH_de_catá		
GH_de_catá CTTTTAGCTTGTTTCAAGAAAGACATGCTCAAAGTGGAGACTT GH_de_L.os CTTTTAGCTTGTTTCAAGAAAGACATGCACAAAGTGGAGACTT ***********************************	GI_GE_L.05	ACCIAIGACHAILI I CACACCAACCI GAGAAACGACCACCI CI GATGAACAACTACCCC
GH_de_catá CTTTTAGCTTGTTTCAAGAAAGACATGCTCAAAGTGGAGACTT GH_de_L.os CTTTTAGCTTGTTTCAAGAAAGACATGCACAAAGTGGAGACTT ***********************************	WITT C	T Y Z X F D F M T D M D D V-1 T M Y M Y G
GH_de_L.os CTTTTAGCTTGTTTCAAGAAAGACATGCACAAAGTGGAGACTT	GH de catá	
UNIVERSIDAL AGILUNUMA DE NUEVO LEON		O ####################################
	UNIVER	SIDAD AG BUNUMA DE NUEVO LEON

Figura 23.- Análisis de la secuencia de GH de catán. (A) El reporte obtenido con el BLAST indica que la secuencia corresponde a GH, ya que es muy similar a diferentes GHs de otras especies. (B) La secuencia se alineó con la GH de Lepisosteus osseus utilizando el programa Clustal W y muestra una similitud del 98.5 %, en azul se muestran los primers y en rojo los cambios nucleotídicos, también se señala, en verde, el cambio nucleotídico que da origen al cambio aminoacídico en la proteína. La traducción en aminoacidos de la secuencia obtenida se incluve en color morado.

Una vez analizada la secuencia se procedió a la reconstrucción de árboles filogenéticos utilizando el programa Philip y basándose en el método de la máxima parsimonia. La secuencia aminoacidica se alineó primero en el programa Chustal W con las secuencias de GHs reportadas a la fecha en peces considerados ancestrales (Acipenser transmontaus, Amia calva, Lepisosteus osseus y Anguilla anguilla), de los cuales solo la anguila pertenece a los peces óseos modernos (Teleósteos). Una vez alineadas las secuencias, se reconstruyó el árbol en donde se observa que la GH del catán está muy relacionada a la GH del L. osseus, lo cual se esperaba, va que ambos peces pertenecen a la familia de los Lepisoteidos. El esturión fue tomado como grupo fuera, va que dentro de los peces con GHs reportadas a la fecha, es considerado el mas ancestral (350 millones de años). Amia calva pertenece al orden de los Amiiformes y está relacionada con la GH de los peces del orden de los Semionotiformes (catán y L. osseus). Ambos ordenes de peces pertenecen al superorden de Neopteigios. La GH de la anguila presenta mayor número de cambios aminoacídicos, lo cual era de esperar, ya que este pez pertenece a la familia de los teleósteos o peces óseos modernos, que son considerados los más evolucionados (Figura 24) ENERAL DE BIBLIOTECAS

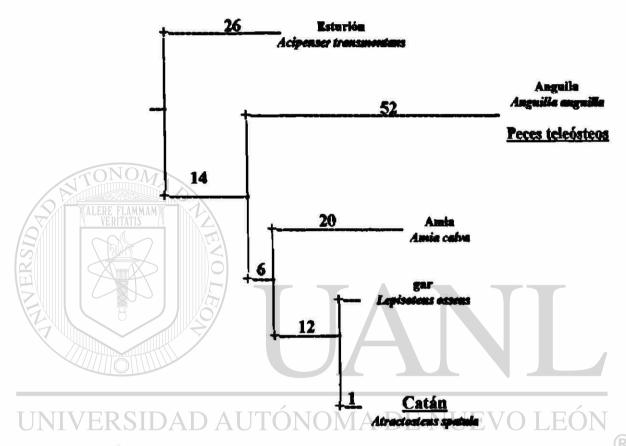


Figura 24.- Árbol filogenético de GH en peces ancestrales. En la figura se muestran los resultados del programa Philip con el cual se compararon las GHs reportadas a la fecha de peces ancestrales y la GH del catán. Los números indican los cambios aminoacidicos que han ocurrido en las diferentes GHs a lo largo de la evolución.

CAPITULO VI

DISCUSION

El estudio comparativo de las secuencias nucleotídicas está permitiendo aclarar los mecanismos de evolución del genoma, constituyendo así una herramienta importante para precisar los datos evolutivos. La familia de la hormona del crecimiento, prolactina y somatolactina representa un excelente modelo, ofreciendo la ventaja de analizar un gen o una familia multigénica en diferentes especies e inferir también sobre la filogenia de un grupo en particular, por ejemplo, los peces (Bernardi y cols., 1993, Wallia, 1996 y 2000). Sin embargo, existe cierta heterogeneidad entre el número de secuencias reportadas para los diferentes grupos. Dentro de los peces mas estudiados a la fecha se encuentran aquellos de interés en acuacultura, la mayoría de los cuales son teleósteos. Al contrario, en grupos como los peces cartilaginosos, óseos ancestrales y pulmonados, las secuencias reportadas de la familia GH/PRL/SL son aún escasas, por lo cual es importante la aportación de mas datos que permitan esclarecer las relaciones filogenéticas de este grupo de vertebrados, así como complementar el estudio evolutivo de esta familia génica.

Se eligió el catán como modelo de estudio por su interés evolutivo y por el interés biológico que presenta, ya que es un una especie nativa de la región Noreste del país que en la actualidad se encuentra en peligro de extinción (Mendoza y cols., 1999).

Al realizar la búsqueda de las hormonas de la familia GH/PRL/SL, se encontró que la GH ha sido la más estudiada en los peces ancestrales; aún así, son solamente tres los reportes existentes, habiéndose reportado sólo una secuencia de SL y ninguna de PRL en este tipo de peces. Por lo tanto, los iniciadores se diseñaron utilizando las secuencias disponibles reportadas para el gen de interés. En el caso de la SL y de la PRL, el escaso número de reportes para los peces ancestrales solo permitió diseñar los iniciadores sobre regiones conservadas del gen para los peces teleósteos. En el caso de la PRL, estos iniciadores permitieron amplificar por RT-PCR el DNAc de la tilapia, utilizado como control positivo.

Aunque se evidenció la presencia del gen de PRL en el DNAg del catán, no se logró obtener una amplificación específica en los ensayos de RT-PCR. La similitud entre las secuencias de PRL de peces teleósteos y no teleósteos es baja (entre un 30 y 57%), indicando que la secuencia ha variado mucho a lo largo de la evolución. No obstante es muy probable que los iniciadores diseñados sólo funcionen en peces teleósteos, como lo demuestra la amplificación del DNAc de PRL de tilapia, y no en peces ancestrales. Sin embargo, al obtener la secuencia de PRL en tilapia, se aporta una nueva sonda para la identificación de PRL, herramienta más apropiada para trabajar con la PRL en peces.

La SL ha sido el miembro de la familia menos estudiado hasta la fecha y solo se ha reportado un total de 14 secuencias para esta hormona. La similitud entre las secuencias de SL de peces teleósteos y del único pez ancestral para el que se ha reportado esta hormona (esturión), varía de un 56 a un 71%. Por lo tanto, la SL aparenta ser más conservada que la PRL, pero se requieren de más datos para aclarar esta relación. Los

iniciadores diseñados no permitieron amplificar el DNAc de la SL del catán. Un control positivo adecuado para comprobar su eficacia, hubiera sido esturión, ya que es el único pez no teleósteo en el que se ha descrito esta hormona, pero por carecer de material biológico no fue posible realizar esta prueba. Estos iniciadores fueron probados en tilapia, sin éxito, lo que probablemente se debe a que los iniciadores se diseñaron dando preferencia al esturión.

La GH ha sido el miembro de la familia más estudiado, aún así, la mayoría de las secuencias reportadas pertenecen a especies de los peces llamados peces óseos modernos o teléosteos. Para peces no teleósteos están reportadas a la fecha las secuencias de Amia calva, Lepisosteus osseus y Acipenser transmontanus. En peces teleósteos, las GHs presentan una similitud que va desde un 100 a un 33%, lo que indica que las secuencias han sufrido varios cambios a lo largo de la evolución en estos peces. Sin embargo, entre las tres secuencias de GH de peces no teleósteos la similitud aumenta entre 76 y 82%, por lo cual la conservación parece ser mayor, pero el hecho de que sean solo tres secuencias limita el análisis. Se diseñaron dos juegos de iniciadores en base a las mismas secuencias. El juego diseñado sobre el ATG y el codón de terminación no permitió amplificar la secuencia de GH, el análisis posterior de las secuencias indicó que la región del péptido señal es muy variable en peces y pudiera ser la causa de que los primeros iniciadores no funcionaran. Unicamente el segundo juego mas interno, diseñado sobre zonas conservadas, permitió obtener un amplicón de GH. La secuencia encontrada para la GH de catán es muy similar a la reportada para Lepisosteus osseus. Aunque ambos peces pertenecen a la misma familia (Lepisoteidae), estos géneros se separaron hace aproximadamente 180 millones de años (Wiley, op.cit). Sin embargo, el DNAc de la proteína madura que se clonó se encuentra muy conservado. Esto indica que a pesar del tiempo transcurrido desde la divergencia de los dos géneros, la velocidad de cambios ha sido muy baja: de 3.7 X 10⁻¹¹ substituciones de aa/sitio/año, y aún a nivel nucleotídico es de 7.9 X 10⁻¹¹ substituciones /sitio/año. Este resultado apoya la alta conservación de la secuencia de la proteína madura observada entre los peces ancestrales. La GH del catán presenta un total de 33 cambios aminoacídicos con la secuencia ancestral inferida por el programa Philip, mientras que la secuencia de la anguila presenta 66 cambios, a pesar de considerarse un pez ancestral dentro de los teleósteos. Al comparar la secuencia obtenida se observó la conservación de los nucleótidos a nivel de las uniones entre los exones. Por lo cual se puede inferir que el DNAc consta de 5 exones y que el gen del catán presenta la estructura "clásica" de la GH con 5 exones y 4 intrones. Esta organización génica se ha conservado a lo largo de la evolución, con la excepción de algunos peces (salmónidos).

La longitud de la secuencia reportada abarca aproximadamente el 74% de la totalidad de la proteína madura. Es probable que el cambio aminoacídico que se encontró en la proteína madura (Valina → Alanina) no afecte la interacción con el receptor, ya que ambos aminoácidos pertenecen al grupo de los aminoácidos no polares. Cabe mencionar que los iniciadores fueron diseñados sobre secuencias conservadas de los exones II y V que resultan generalmente más conservados (Treviño, 1999) por estar involucrados en la unión con el receptor.

Al divergir los teleósteos ocurrió una aceleración en los cambios que sufrió la GH, tanto a nivel de los exones, como de los intrones (Wallis y cols., 1996, Venkatesh y cols.,

1999). Se cree que estos cambios fueron adaptativos, pero no existe evidencia de que estos cambios afecten directamente la función de la hormona (Wallis y cols., 1996).

En este trabajo, se obtuvo el DNAc de la GH de catán por RT-PCR a partir del RNA total de cabezas de larvas. En los artículos reportados a la fecha, las GHs de peces habían sido clonadas a partir de hipófisis, siendo éste, el primer trabajo en donde se clona una GH de pez a partir de cabezas de larvas. Además se demostró que en larvas de 7 días hay una expresión detectable por PCR del transcrito de la hormona. El complementar este trabajo con el análisis por RT-PCR de la expresión de la GH en las diferentes etapas larvarias, permitiría completar el perfil de expresión de esta hormona y contribuir al conocimiento de la fisiología de este pez.

Además la obtención de las secuencias de SL y PRL en esta misma especie primitiva permitiría esclarecer los mecanismos que dieron lugar a esta familia génica.

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN © DIRECCIÓN GENERAL DE BIBLIOTECAS

CAPITULO VII

CONCLUSIONES

En este trabajo se llegó a las siguientes conclusiones:

- Se evidenciaron los genes de GH y PRL en el DNAg del catán por medio de la técnica de Slot-blot.
- El diseño de iniciadores consenso sobre la secuencia codificante que corresponde
 a la proteína madura, permitió obtener por RT-PCR el DNAc de GH de catán.
- La secuencia de la proteína madura de la GH de catán se encuentra muy
 conservada entre los género Atractosteus y Lepisosteus, a pesar de haber
 divergido hace aproximadamente 180 millones de años.
- La reconstrucción de un árbol filogenético entre las GHs de diferentes especies, indicó claramente que la secuencia de la hormona se ha mantenido muy conservada entre los peces ancestrales, mientras que sufrió una evolución rápida en los teleósteos.
- Se encontró una expresión detectable de la GH en larvas de catán de 10 días.

CAPITULO VIII

PERSPECTIVAS

La obtención de la secuencia codificante de la GH de catán es un primer paso en el mejor conocimiento de la fisiología y del genoma de esta especie. Este pez es una especie en peligro de extinción que es uno de los sobrevivientes de la Pangea. Desafortunadamente, aún se conoce muy poco de esta especie que constituye un eslabón muy importante en la evolución. Esta especie también es fuente de ingresos para pescadores, que en la actualidad cuentan con un comercio bien establecido de carne de catán, aunque las poblaciones han disminuido mucho.

El tener el DNAc de la GH de catán, permitirá producir la hormona recombinante o construir un vector de expresión para tratar los catanes (o especies cercanas) acelerando

su crecimiento, favoreciendo así su más rápida reproducción y sobrevivencia.

R

DIRECCIÓN GENERAL DE BIBLIOTECAS

CAPITULO IX

BIBLIOGRAFIA

- Agellon, LB., Davies, SL., Chen, T.T., Powers, D.A. (1988) Structure of fish (rainbow trout) growth hormone gene and its evolutionary implications. *Proc Natl Acad Sci USA*. 85(14): 5136-40.
- 2) Amemya, Y., Sogabe, Y., Nozaki, M., Takahashi, A., Kawauchi, H. (1999)

 Somatolactin in the white sturgeon and African lungfish and its evolutionary significance. Gen. Comp. Endocrinol.114(2): 181-190.
- 3) Argenton, F., Vianello, S., Bernardini, S., Jacquemin, P., Martial, J., Belayew, A., Colombo, L., Bortolussi, M. (1993) The transcriptional regulation of the growth hormone gene is conserved in vertebrate evolution. B.B.R.C.;19(2):1360-
 - 6.
- 4) Astola, A., Pendon, C., Ortiz, M., Valdivia, M.M.(1996) Cloning and expression of somatolactin, a pituitary hormone related to growth hormone and prolactin from gilthead seabream, Sparua aurata. Gen. Comp. Endocrinol. 104(3):330-6.
- 5) Auperin, B., Rentier-Delrue, F., Martial, J.A., Prunet, P. (1994) Evidence that two tilapia (*Oreochromis niloticus*) prolactins have different osmoregulatory functions during adaptation to a hyperosmotic environment. *J.Mol.Endocrinol*. 12(1):13-24.

- 6) Baccari, GC., Di Mateo, L., Minucci, S. (1996). Effects of prolactin and cortisol on the Harderian gland of the terrapin, *Pseudemys scripta*, adapted to different salinities. *Anat. Rec.* 244:225-34.
- 7) Bernardi, G., D'Onofrio, G., Caccio, S., Bernardi, G. (1993) Molecular phylogeny of bony fishes, based on the amino acid sequence of the growth hormone. J. Mol. Evol, 37(6): 644-9.
- 8) Chang, Y.S., Liu, C.S., Huang, F.L., Lo, T.B. (1992) The primary structures of growth hormones of the tree cyprinid species: goghead carp, silver carp and grass carp. Gen Comp Endocrinol. 87(3):385-93
- 9) Darwin, Charles Robert. (1859) The origin of species. Ed. Purrua México.
- 10) De la Fuente, J., Guillén, I., Martínez, R., Estrada, M.P. (1999) Growth regulation and enhancement in tilapia: basic research findings and their applications. Genet Anal. 15(3-5):85-90
- 11) Gross-Bellard, M., Oudet, P., Chambon, P. 1972. Isolation of high-molecularweight DNA from mammalian cells. *Eur.J. Biochem.* 32:36.
 - 12) http://www.arch.dcr.state.nc.us/subsist/zooarch.htm
 - 13) http://www.fcn.state.fl.us/gfc/fishing/Fishes/gar.html
 - 14) http://www2.ncbi.nlm.nih.gov/
 - 15) Ingraham, H.A., Chen, R., Mangalam, H.J., Elsholtz, H.P., Flynn, S.F., Lin, C.R., Simmons, D.M., Rosendfeld, M.G. (1998) A tissue specific transcription factor containing a homeodomain specifies a pituitary phenotype. Cell 55,519-529

- 16) Inoue, H., Nojima, H., Okamaya, H. (1999) High efficiency transformation of E. coli with plasmid. Gene. 96:23-28.
- 17) Jeh, H.S., Kim, C.H., Leem H.K., Han, K. (1998) Recombinant flounder growth hormone from *Escherichia coli*: overexpression, efficient recovery, and growth-promoting effect on juvenile flounder by oral administration. *Biotechnol*. Feb 26;60(3):183-93
- 18) Kaneko, T. (1996) Cell biology of somatolactin. Int Rev Cytol. 169:1-24.
- 19) Kelly, SP., Chow, I.N., Woo, N.Y. (1999) Effects of prolactin and growth hormone on strategies of hypoosmotic adaptation in a marine teleost, *Sparus sarba*. Gen. Comp. Endocrinol. 113(1): 9-22.
- 20) Li, W., Graur, D. (1991) Fundamentals of Molecular Evolution. 1:1-19. Ed. Sinaver Associates, Inc.
- 21) Marchuk, D., Drumm, M., Saulino, A., Collins, S.C.(1990) Construction of T-vectors and general system for direct cloning of unmodified PCR products.
- Nucleic Acids Research. 19 (5): 1154-55.
 - 22) May D., Alrubian J., Patel S., Dores R.M., Rnad-Weaver M.(1999) Studies on the GH/SL gene family: cloning of African Lungfish (*Protepteus annectens*) growth hormone and somatolactin and Toad (*Bufo marinus*) growth hormone. Gen Comp Endocrinol 113(1):121-35
 - 23) May D., Todd, C.M., Rand-Weaver, M. (1997) cDNA cloning of eel (Anguilla anguilla) somatolactin. Gene. 25;188(1):63-7.

- 24) May, D., Alrubaian, J., Patel, S., Dores, R.M., Rand-Weaver, M. (1999) Studies on the GH/SL gene family: cloning of African lungfish (*Protopterus annectens*) growth hormone and somatolactin and toad (*Bufo marinus*) growth hormone. Gen. Comp. Endocrinol. 113(1):121-135.
- 25) Mendoza, R., Aguilera, C., Montemayor J., Rodríguez, G., Márquez, G. (1999) Biología de los lepisosteidos y estudios orientados hacia la recuperación de las poblaciones naturales del catán (*Atractosteus spatula*) In: Redes Nacionales de Investigación en Acuacultura. Instituto Nacional de Pesca-SEMARNAP Álvarez Torres, Guzmán Arroyo, Contreras Balderas y Silvia Loera (Eds.) pp 103-120.
- 26) Mendoza R., Aguilera C., Montemayor J., Rodríguez G., Márquez G. (1999)

 Aspectos reproductivos de los lepisosteidos, con, énfasis en las perspectivas para el control de la reproducción del catán. In: Redes Nacionales de Investigación en Acuacultura. Instituto Nacional de Pesca-SEMARNAP Álvarez Torres, Guzmán Arroyo, Contreras Balderas y Silvia Loera (Eds.) pp 103-120.
- 27) Mullis, P.E., Patel, M.S., Brickell, P.M., Brook, C.G.D. (1991) Constitutionally
 Short Stature: Analysis of the insulin-Like Growth Factor-I Gene and the Human
 Growth Hormone Gene Cluster. *Pediatric Research* 29(4) 412-415
 - 28) Narnaware, YK., Kelli, SP., Woo, NY. (1998) Stimulation of macrophage phagocytosis and lymphocyte count by exogenous prolactin administration in silver sea beam (Sparua sarba) adapted to hyper- and hypo- osmotic salinities.
 Vet. Immunol. Immunopatol. 61(2-4):387-91.

- 29) Niall, H.D., Hogan, M.L., Sayer, R., Rosenblum, I.Y., Greenwood, F.C. (1971) Sequences of pituitary and placental lactogenic and growth hormones: evolution from a primordial peptide by gene duplication. *Proc Natl Acad Sci USA* 68:866-869
- 30) Ohta, Tomoko 1991 Multigene families and evolution of complexity. J. Mol. Evol. 33: 34-41.
- 31) Ono, M., Takayamam Y., Rand-Weaverm M., Sakatam S., Yasunagam T., Nososm T., Kawauchim H. (1990) cDNA cloning of somatolactin, a pituitary protein related to growth hormone and prolactin. *Proc Natl Acad Sci USA* 87(11): 4330-4.
- 32) Pendon, C., Martinez-Barbera, JP., Valdivia, M.M. (1994) Cloning of a somatolactin-encoding cDNA from sole (Solea seleganensis). Gene 147(2):227-230.
- 33) Rand-Weaver, M., Noso, T., Muramoto, K., Kawauchi, H. (1991) Isolation and characterization of somatolactin, a new protein related to growth hormone and prolactin from Atlantic cod (*Gadus morhua*) pituitary glands. *Biochemistry*. 12;30(6):1509-15.
 - 34) Rentier-Delrus, F., Swennwn, D., Prunet, P., Lion, M., Martial, JA. (1989)
 Tilapia prolactin: molecular cloning of two DNAs and expression in *Escherichia*coli. DNA 8(4): 261-270
 - 35) Sanbrook J., Fritsh E. F. y Maniatis T.(1989) Molecular cloning a Laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.

- 36) Sandrina K, Bernichtein S., Kelly P.A., Martial J.A. y Vincent G. (1999).
 Biological properties of human prolactin analogs depend not only on global hormone affinity, but also on the relative affinities of both receptor binding sites.
 J. Biol. Chem. 274:37:26033-26043.
- 37) Sanger, F.S., Nicklen, A.R. (1977) DNA sequencing with chain terminating inhibitors. *Proc.Natl.Acad.U.S.A.* 74:5463-5467
- 38) Sifuentes-Rincón (2000) Estudio de la Familia Génica GH-PL en el gato doméstico (*Felis catus*): Un modelo molecular para precisar la evolución de los carnívoros. Tesis Doctoral. Facultad de Medicina de la UANL.
- 39) Singer, M., y Berg, P. (1991) Genes and genomes. A changing perspective.

 University Science Books. USA.
- 40) Swennen, D., Poncelet, A.C., Sekkali, B., Rentier-Delrue, F., Martial, J.A., Belayewm A. (1992) Structure of tilapia (*Oreochromis mossambicus*) prolactin I gene. *DNA Cell Biol.* 11(9):673-84.
- 41) Takayama, Y., Rand-Weaver. M., Kawauchi, H., Ono, M. (1991) Gene structure of chum salmon somatolactin, a presumed pituitary hormone of the growth hormone/prolactin family. *Mol Endocrinol*. 5(6):778-86
 - 42) Treviño, V.(1999) Obtención de nuevos genes de la hormona del crecimiento en vertebrados. Tesis de Maestría en Ciencias. Pg 14-18. Facultad de Medicina. Universidad Autónoma de Nuevo León.
 - 43) Venkatesh, B., Ning, Y., Brener, S. (1999) Late Changes in spliceosomal introns define clades in vertebrate evolution. *Proc. Natl. Acad. Sci. USA*. 96:10267-10271.

- 44) Wallis M. (1996) The Molecular Evolution of vertebrate Growth Hormones: A Pattern of Near-Stasis Interrupted by Sustained Bursts of Rapid Change. J Mol Evol 43:93-100
- 45) Wallis M. (2000): Episodic Evolution of Protein Hormones: Molecular Evolution of Pituitary Prolactin. J Mol Evol 50:465-473
- 46) Wiley, E.O.(1976) The phylogeny and biogeography of fossil and recent gars (Actinopterygii:Lepisosteidae). *Misc.Publ.Univ.Kans.Mus.Nat.Hist.*64:1-111.
- 47) Yang, B., Green, M., Chen, T. (1999) Early Embryonic Expression of the Growth Hormone Family Protein Genes in the Developing Rainbow Trout,

 Onchorhynchus mykiss. Mol Reprod Dev. 53(2):127-34
- 48) Yang, B.Y., Arab, M., Chen, T.T. (1997) Cloning and characterization of rainbow trout (Oncorhynchus mikiss) somatolactin cDNA and its expression in pituitary and nonpituitary tissues. *Gen Comp Endocrinol*. 106(2): 271-80.
- 49) Yasuda, A., Yamaguchi, K., Noso, T., Papkoff, H., Polenov, A.L., Nicoll, C.S., Kawauchi, H. (1992) The complete amino acid sequence of growth hormone from sturgeon (Acipenser guidenstadti). Biochim. Biophys. Acta 1120(3):297-304.
 - 50) Zhu, Z.Y., Sun, Y.H. (2000) Embryonic and genetic manipulation in fish. Cell Res. Mar; 10(1):17-27.

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN DIRECCIÓN GENERAL DE BIBLIOTECAS

